login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004412
Expansion of ( Sum_{n = -infinity..infinity} x^(n^2) )^(-11).
1
1, -22, 264, -2288, 15994, -95568, 505648, -2425280, 10721832, -44229350, 171861360, -633713808, 2230733648, -7532979344, 24502989984, -77036477760, 234785552122, -695409096096, 2006117554936, -5647472566736
OFFSET
0,2
LINKS
FORMULA
a(n) ~ (-1)^n * exp(Pi*sqrt(m*n)) * m^((m+1)/4) / (2^(3*(m+1)/2) * n^((m+3)/4)), set m = 11 for this sequence. - Vaclav Kotesovec, Aug 18 2015
From Ilya Gutkovskiy, Sep 20 2018: (Start)
G.f.: 1/theta_3(x)^11, where theta_3() is the Jacobi theta function.
G.f.: Product_{k>=1} 1/((1 - x^(2*k))*(1 + x^(2*k-1))^2)^11. (End)
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[((1 + (-x)^k)/(1 - (-x)^k))^11, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 18 2015 *)
PROG
(PARI) q='q+O('q^99); Vec(((eta(q)*eta(q^4))^2/eta(q^2)^5)^11) \\ Altug Alkan, Sep 20 2018
CROSSREFS
Sequence in context: A022587 A143479 A213352 * A172242 A055756 A128766
KEYWORD
sign
STATUS
approved