login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004415
Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-14).
1
1, -28, 420, -4480, 38052, -273336, 1723008, -9770240, 50722980, -244273820, 1102294984, -4698110592, 19034512000, -73696070840, 273868321536, -980502270720, 3392689809572, -11376760267320, 37060195850020
OFFSET
0,2
LINKS
FORMULA
a(n) ~ (-1)^n * exp(Pi*sqrt(m*n)) * m^((m+1)/4) / (2^(3*(m+1)/2) * n^((m+3)/4)), set m = 14 for this sequence. - Vaclav Kotesovec, Aug 18 2015
From Ilya Gutkovskiy, Sep 20 2018: (Start)
G.f.: 1/theta_3(x)^14, where theta_3() is the Jacobi theta function.
G.f.: Product_{k>=1} 1/((1 - x^(2*k))*(1 + x^(2*k-1))^2)^14. (End)
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[((1 + (-x)^k)/(1 - (-x)^k))^14, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 18 2015 *)
PROG
(PARI) q='q+O('q^99); Vec(((eta(q)*eta(q^4))^2/eta(q^2)^5)^14) \\ Altug Alkan, Sep 20 2018
CROSSREFS
Sequence in context: A233333 A271793 A024213 * A096949 A093974 A121803
KEYWORD
sign
STATUS
approved