login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004411
Expansion of ( Sum_{n = -infinity..infinity} x^(n^2) )^(-10).
2
1, -20, 220, -1760, 11420, -63624, 315040, -1418560, 5903260, -22976820, 84413912, -294841120, 984745120, -3159938760, 9780562880, -29296914112, 85169213340, -240882506920, 664216884540, -1788966694240, 4714033526616, -12170584419840, 30826269009760
OFFSET
0,2
LINKS
FORMULA
a(n) ~ (-1)^n * exp(Pi*sqrt(m*n)) * m^((m+1)/4) / (2^(3*(m+1)/2) * n^((m+3)/4)), set m = 10 for this sequence. - Vaclav Kotesovec, Aug 18 2015
From Ilya Gutkovskiy, Sep 20 2018: (Start)
G.f.: 1/theta_3(x)^10, where theta_3() is the Jacobi theta function.
G.f.: Product_{k>=1} 1/((1 - x^(2*k))*(1 + x^(2*k-1))^2)^10. (End)
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[((1 + (-x)^k)/(1 - (-x)^k))^10, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 18 2015 *)
PROG
(PARI) q='q+O('q^99); Vec(((eta(q)*eta(q^4))^2/eta(q^2)^5)^10) \\ Altug Alkan, Sep 20 2018
CROSSREFS
Sequence in context: A213351 A140236 A341371 * A140354 A155673 A000833
KEYWORD
sign
STATUS
approved