OFFSET
0,2
REFERENCES
E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 314.
G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Chelsea Publishing Company, New York 1959, p. 135 section 9.3. MR0106147 (21 #4881)
LINKS
T. D. Noe, Table of n, a(n) for n = 0..10000
H. H. Chan and C. Krattenthaler, Recent progress in the study of representations of integers as sums of squares, arXiv:math/0407061 [math.NT], 2004.
Shi-Chao Chen, Congruences for rs(n), Journal of Number Theory, Volume 130, Issue 9, September 2010, Pages 2028-2032.
J. Liouville, Nombre des représentations d’un entier quelconque sous la forme d’une somme de dix carrés, Journal de mathématiques pures et appliquées 2e série, tome 11 (1866), p. 1-8.
FORMULA
Euler transform of period 4 sequence [ 20, -30, 20, -10, ...]. - Michael Somos, Sep 12 2005
Expansion of eta(q^2)^50 / (eta(q) * eta(q^4))^20 in powers of q. - Michael Somos, Sep 12 2005
a(n) = (20/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017
EXAMPLE
G.f. = 1 + 20*x + 180*x^2 + 960*x^3 + 3380*x^4 + 8424*x^5 + 16320*x^6 + ...
MAPLE
(sum(x^(m^2), m=-10..10))^10;
# Alternative:
A000144list := proc(len) series(JacobiTheta3(0, x)^10, x, len+1);
seq(coeff(%, x, j), j=0..len-1) end: A000144list(30); # Peter Luschny, Oct 02 2018
MATHEMATICA
Table[SquaresR[10, n], {n, 0, 30}] (* Ray Chandler, Jun 29 2008; updated by T. D. Noe, Jan 23 2012 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^10, {q, 0, n}]; (* Michael Somos, Aug 26 2015 *)
nmax = 50; CoefficientList[Series[Product[(1 - x^k)^10 * (1 + x^k)^30 / (1 + x^(2*k))^20, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 24 2017 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n))^10, n))}; /* Michael Somos, Sep 12 2005 */
(Sage)
Q = DiagonalQuadraticForm(ZZ, [1]*10)
Q.representation_number_list(37) # Peter Luschny, Jun 20 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Extended by Ray Chandler, Nov 28 2006
STATUS
approved