login
A037250
a(n) = n^2*(n^2 + 1)*(n-1).
3
0, 0, 20, 180, 816, 2600, 6660, 14700, 29120, 53136, 90900, 147620, 229680, 344760, 501956, 711900, 986880, 1340960, 1790100, 2352276, 3047600, 3898440, 4929540, 6168140, 7644096, 9390000, 11441300
OFFSET
0,3
COMMENTS
Conjecture: satisfies a linear recurrence having signature (6, -15, 20, -15, 6, -1). - Harvey P. Dale, Jul 27 2019
This conjecture is true since for any series a(n) = P(n) (P polynomial in n of degree d) there is an o.g.f. Q(x)/(1-x)^(d+1). - Georg Fischer, Feb 17 2021
REFERENCES
R. W. Carter, Simple Groups of Lie Type, Wiley 1972, Chap. 14.
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
MAPLE
seq(coeff(series(4*x^2*(x^3+9*x^2+15*x+5)/(x-1)^6, x, n+1), x, n), n = 0..30); # Georg Fischer, Feb 17 2021
MATHEMATICA
Table[n^2 (n^2+1)(n-1), {n, 0, 30}] (* Harvey P. Dale, Jul 27 2019 *)
PROG
(Magma) [n^2*(n^2+1)*(n-1): n in [0..30]]; // Vincenzo Librandi, Sep 14 2011
CROSSREFS
Sequence in context: A027332 A159538 A091983 * A361569 A000144 A361609
KEYWORD
nonn,easy
STATUS
approved