login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A037250 a(n) = n^2*(n^2 + 1)*(n-1). 3
0, 0, 20, 180, 816, 2600, 6660, 14700, 29120, 53136, 90900, 147620, 229680, 344760, 501956, 711900, 986880, 1340960, 1790100, 2352276, 3047600, 3898440, 4929540, 6168140, 7644096, 9390000, 11441300 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Conjecture: satisfies a linear recurrence having signature (6, -15, 20, -15, 6, -1). - Harvey P. Dale, Jul 27 2019

This conjecture is true since for any series a(n) = P(n) (P polynomial in n of degree d) there is an o.g.f. Q(x)/(1-x)^(d+1). - Georg Fischer, Feb 17 2021

REFERENCES

R. W. Carter, Simple Groups of Lie Type, Wiley 1972, Chap. 14.

J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985, p. xvi.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).

MAPLE

seq(coeff(series(4*x^2*(x^3+9*x^2+15*x+5)/(x-1)^6, x, n+1), x, n), n = 0..30); # Georg Fischer, Feb 17 2021

MATHEMATICA

Table[n^2 (n^2+1)(n-1), {n, 0, 30}] (* Harvey P. Dale, Jul 27 2019 *)

PROG

(MAGMA) [n^2*(n^2+1)*(n-1): n in [0..30]]; // Vincenzo Librandi, Sep 14 2011

CROSSREFS

Cf. A064487, A064583.

Sequence in context: A027332 A159538 A091983 * A000144 A219581 A177073

Adjacent sequences:  A037247 A037248 A037249 * A037251 A037252 A037253

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 02:29 EDT 2021. Contains 348141 sequences. (Running on oeis4.)