OFFSET
0,3
COMMENTS
Conjecture: satisfies a linear recurrence having signature (6, -15, 20, -15, 6, -1). - Harvey P. Dale, Jul 27 2019
This conjecture is true since for any series a(n) = P(n) (P polynomial in n of degree d) there is an o.g.f. Q(x)/(1-x)^(d+1). - Georg Fischer, Feb 17 2021
REFERENCES
R. W. Carter, Simple Groups of Lie Type, Wiley 1972, Chap. 14.
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
MAPLE
seq(coeff(series(4*x^2*(x^3+9*x^2+15*x+5)/(x-1)^6, x, n+1), x, n), n = 0..30); # Georg Fischer, Feb 17 2021
MATHEMATICA
Table[n^2 (n^2+1)(n-1), {n, 0, 30}] (* Harvey P. Dale, Jul 27 2019 *)
PROG
(Magma) [n^2*(n^2+1)*(n-1): n in [0..30]]; // Vincenzo Librandi, Sep 14 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved