login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A037251
a(n) = n^3*(n^3 + 1)*(n-1).
3
0, 0, 72, 1512, 12480, 63000, 234360, 707952, 1838592, 4257360, 9009000, 17728920, 32864832, 57948072, 97919640, 159516000, 251719680, 386279712, 578306952, 846949320, 1216152000, 1715507640
OFFSET
0,3
REFERENCES
R. W. Carter, Simple Groups of Lie Type, Wiley 1972, Chap. 14.
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
LINKS
Index entries for linear recurrences with constant coefficients, signature (8, -28, 56, -70, 56, -28, 8, -1).
FORMULA
G.f.: 24*x^2*(7*x^4 + 61*x^3 + 100*x^2 + 39*x + 3)/(1-x)^8. - Sergei N. Gladkovskii, Aug 20 2012
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8); a(0)=0, a(1)=0, a(2)=72, a(3)=1512, a(4)=12480, a(5)=63000, a(6)=234360, a(7)=707952. - Harvey P. Dale, Nov 23 2012
MATHEMATICA
n3[n_]:=Module[{c=n^3}, c(c+1)(n-1)]; Array[n3, 30, 0] (* or *) LinearRecurrence[ {8, -28, 56, -70, 56, -28, 8, -1}, {0, 0, 72, 1512, 12480, 63000, 234360, 707952}, 30] (* Harvey P. Dale, Nov 23 2012 *)
PROG
(Magma) [n^3*(n^3+1)*(n-1): n in [0..30]]; // Vincenzo Librandi, Sep 14 2011
CROSSREFS
Sequence in context: A008391 A292881 A282018 * A352994 A234209 A280807
KEYWORD
nonn,easy
STATUS
approved