The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A177073 a(n) = (9*n+4)*(9*n+5). 2
 20, 182, 506, 992, 1640, 2450, 3422, 4556, 5852, 7310, 8930, 10712, 12656, 14762, 17030, 19460, 22052, 24806, 27722, 30800, 34040, 37442, 41006, 44732, 48620, 52670, 56882, 61256, 65792, 70490, 75350, 80372, 85556, 90902, 96410, 102080, 107912, 113906, 120062 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Cf. comment of Reinhard Zumkeller in A177059: in general, (h*n+h-k)*(h*n+k)=h^2*A002061(n+1)+(h-k)*k-h^2; therefore a(n)=81*A002061(n+1)-61. - Bruno Berselli, Aug 24 2010 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = 162*n+a(n-1) with n>0, a(0)=20. From Harvey P. Dale, Jun 24 2011: (Start) a(0)=20, a(1)=182, a(2)=506, a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). G.f.: -2*(x*(10*x+61)+10)/(x-1)^3. (End) From Amiram Eldar, Feb 19 2023: (Start) a(n) = A017209(n)*A017221(n). Sum_{n>=0} 1/a(n) = tan(Pi/18)*Pi/9. Product_{n>=0} (1 - 1/a(n)) = sec(Pi/18)*cos(sqrt(5)*Pi/18). Product_{n>=0} (1 + 1/a(n)) = sec(Pi/18)*cosh(sqrt(3)*Pi/18). (End) MATHEMATICA f[n_] := Module[{c = 9n}, (c+4)(c+5)]; Array[f, 40, 0] (* or *) LinearRecurrence[{3, -3, 1}, {20, 182, 506}, 40] (* Harvey P. Dale, Jun 24 2011 *) PROG (Magma) [(9*n+4)*(9*n+5): n in [0..50]]; // Vincenzo Librandi, Apr 08 2013 (PARI) a(n)=(9*n+4)*(9*n+5) \\ Charles R Greathouse IV, Jun 17 2017 CROSSREFS Cf. A002061, A017209, A017221, A177059. Sequence in context: A000144 A361609 A219581 * A211153 A210429 A367780 Adjacent sequences: A177070 A177071 A177072 * A177074 A177075 A177076 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, May 31 2010 EXTENSIONS Edited by N. J. A. Sloane, Jun 22 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 08:16 EDT 2024. Contains 374905 sequences. (Running on oeis4.)