The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A162680 G.f. is the polynomial (Product_{k=1..23} (1 - x^(3*k)))/(1-x)^23. 1
 1, 23, 276, 2299, 14927, 80454, 374439, 1545807, 5771919, 19781035, 62936510, 187603065, 527817225, 1410264780, 3596907555, 8795685646, 20699124413, 47031284166, 103467710300, 220946372920, 458974273140, 929305397041 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This is a row of the triangle in A162499. Only finitely many terms are nonzero. LINKS G. C. Greubel, Table of n, a(n) for n = 0..805 MAPLE m:=23: seq(coeff(series(mul((1-x^(3*k)), k=1..m)/(1-x)^m, x, n+1), x, n), n=0..21); # Muniru A Asiru, Jul 07 2018 MATHEMATICA CoefficientList[Series[Times@@(1-x^(3*Range[23]))/(1-x)^23, {x, 0, 30}], x] (* Harvey P. Dale, Jun 04 2017 *) PROG (PARI) x='x+O('x^50); A = prod(k=1, 23, (1-x^(3*k)))/(1-x)^23; Vec(A) \\ G. C. Greubel, Jul 0762018 (Magma) m:=50; R:=PowerSeriesRing(Integers(), m); F:=(&*[(1-x^(3*k)): k in [1..23]])/(1-x)^23; Coefficients(R!(F)); // G. C. Greubel, Jul 06 2018 CROSSREFS Sequence in context: A161523 A161930 A162365 * A010975 A022588 A268992 Adjacent sequences: A162677 A162678 A162679 * A162681 A162682 A162683 KEYWORD nonn AUTHOR N. J. A. Sloane, Dec 02 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 03:03 EST 2023. Contains 367422 sequences. (Running on oeis4.)