login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A162680 G.f. is the polynomial (Product_{k=1..23} (1 - x^(3*k)))/(1-x)^23. 1

%I #14 Sep 08 2022 08:45:46

%S 1,23,276,2299,14927,80454,374439,1545807,5771919,19781035,62936510,

%T 187603065,527817225,1410264780,3596907555,8795685646,20699124413,

%U 47031284166,103467710300,220946372920,458974273140,929305397041

%N G.f. is the polynomial (Product_{k=1..23} (1 - x^(3*k)))/(1-x)^23.

%C This is a row of the triangle in A162499. Only finitely many terms are nonzero.

%H G. C. Greubel, <a href="/A162680/b162680.txt">Table of n, a(n) for n = 0..805</a>

%p m:=23: seq(coeff(series(mul((1-x^(3*k)),k=1..m)/(1-x)^m, x,n+1),x,n),n=0..21); # _Muniru A Asiru_, Jul 07 2018

%t CoefficientList[Series[Times@@(1-x^(3*Range[23]))/(1-x)^23,{x,0,30}],x] (* _Harvey P. Dale_, Jun 04 2017 *)

%o (PARI) x='x+O('x^50); A = prod(k=1, 23, (1-x^(3*k)))/(1-x)^23; Vec(A) \\ _G. C. Greubel_, Jul 0762018

%o (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); F:=(&*[(1-x^(3*k)): k in [1..23]])/(1-x)^23; Coefficients(R!(F)); // _G. C. Greubel_, Jul 06 2018

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Dec 02 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 24 02:58 EST 2024. Contains 370288 sequences. (Running on oeis4.)