login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010975 a(n) = binomial(n,22). 3
1, 23, 276, 2300, 14950, 80730, 376740, 1560780, 5852925, 20160075, 64512240, 193536720, 548354040, 1476337800, 3796297200, 9364199760, 22239974430, 51021117810, 113380261800, 244662670200, 513791607420, 1052049481860, 2104098963720, 4116715363800 (list; graph; refs; listen; history; text; internal format)
OFFSET
22,2
COMMENTS
Coordination sequence for 22-dimensional cyclotomic lattice Z[zeta_23].
LINKS
Matthias Beck and Serkan Hosten, Cyclotomic polytopes and growth series of cyclotomic lattices, arXiv:math/0508136 [math.CO], 2005-2006.
Index entries for linear recurrences with constant coefficients, signature (23, -253, 1771, -8855, 33649, -100947, 245157, -490314, 817190, -1144066, 1352078, -1352078, 1144066, -817190, 490314, -245157, 100947, -33649, 8855, -1771, 253, -23, 1).
FORMULA
a(n) = n/(n-22) * a(n-1), n > 22. - Vincenzo Librandi, Mar 26 2011
G.f.: x^22/(1-x)^23. - G. C. Greubel, Nov 23 2017
From Amiram Eldar, Dec 11 2020: (Start)
Sum_{n>=22} 1/a(n) = 22/21.
Sum_{n>=22} (-1)^n/a(n) = A001787(22)*log(2) - A242091(22)/21! = 46137344*log(2) - 42299425233749/1322685 = 0.9597667941... (End)
MAPLE
(Maple) seq(binomial(n, 22), n=22..42); # Zerinvary Lajos, Aug 04 2008
MATHEMATICA
Binomial[Range[22, 50], 22] (* Harvey P. Dale, Apr 02 2011 *)
PROG
(Magma) [ Binomial(n, 22): n in [22..80]]; // Vincenzo Librandi, Mar 26 2011
(PARI) for(n=22, 50, print1(binomial(n, 22), ", ")) \\ G. C. Greubel, Nov 23 2017
CROSSREFS
Pascal's triangle A007318. - Zerinvary Lajos, Aug 04 2008
Sequence in context: A161930 A162365 A162680 * A022588 A268992 A199031
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 3 02:27 EST 2024. Contains 370499 sequences. (Running on oeis4.)