login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016192
Inverse of 2183rd cyclotomic polynomial.
1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
OFFSET
0,1
COMMENTS
Periodic with period length 2183. - Ray Chandler, Apr 07 2017
FORMULA
G.f. (1 + x + ... + x^36 - x^59 - ... - x^95)/(1 - x^2183) = (1 - x^37)/(1 - x)*(1 - x^59)/(1 - x^2183) = (1 + x + ... + x^36)/(1 + x^59 + x^118 + ... + x^2124) = 1/((1 - x)(1 + x^37 + x^59 +...+ x^2087)), therefore this is a linear recurrence of order 2088. - M. F. Hasler, Feb 16 2018
MAPLE
with(numtheory, cyclotomic); c := n->series(1/cyclotomic(n, x), x, 80);
PROG
(PARI) A016192_vec(N)=Vec((O(x^N)+1-x^37)/(1-x)*(1-x^59)/(1-x^2183)) \\ M. F. Hasler, Feb 16 2018
KEYWORD
sign
AUTHOR
STATUS
approved