OFFSET
1,1
COMMENTS
The 9ish numbers are closed under lunar multiplication. The lunar primes (A087097) are a subset.
Almost all numbers are 9ish, in the sense that the asymptotic density of this set is 1: Among the 9*10^(n-1) n-digit numbers, only a fraction of 0.8*0.9^(n-1) doesn't have a digit 9, and this fraction tends to zero (< 1/10^k for n > 22k-3). This explains the formula a(n) ~ n. - M. F. Hasler, Nov 19 2018
A 9ish number is a number whose largest decimal digit is 9. - Stefano Spezia, Nov 16 2023
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
D. Applegate, C program for lunar arithmetic and number theory [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing]
D. Applegate, M. LeBrun, and N. J. A. Sloane, Dismal Arithmetic, arXiv:1107.1130 [math.NT], 2011. [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing]
FORMULA
Complement of A007095. A102683(a(n)) > 0 (defines this sequence). A068505(a(n)) = a(n): fixed points of A068505 are the terms of this sequence and the numbers < 9. - Reinhard Zumkeller, Dec 29 2011, edited by M. F. Hasler, Nov 16 2018
a(n) ~ n. - Charles R Greathouse IV, May 15 2013
EXAMPLE
E.g. 9, 19, 69, 90, 96, 99 and 1234567890 are all 9ish.
MAPLE
seq(`if`(numboccur(9, convert(n, base, 10))>0, n, NULL), n=0..100); # François Marques, Oct 12 2020
MATHEMATICA
Select[ Range[ 0, 100 ], (Count[ IntegerDigits[ #, 10 ], 9 ]>0)& ] (* François Marques, Oct 12 2020 *)
Select[Range[300], DigitCount[#, 10, 9]>0&] (* Harvey P. Dale, Mar 04 2023 *)
PROG
(Haskell)
a011539 n = a011539_list !! (n-1)
a011539_list = filter ((> 0) . a102683) [1..] -- Reinhard Zumkeller, Dec 29 2011
(PARI) is(n)=n=vecsort(digits(n)); n[#n]==9 \\ Charles R Greathouse IV, May 15 2013
(PARI) select( is_A011539(n)=vecmax(digits(n))==9, [1..300]) \\ M. F. Hasler, Nov 16 2018
(GAP) Filtered([1..300], n->9 in ListOfDigits(n)); # Muniru A Asiru, Feb 25 2019
(Python)
def ok(n): return '9' in str(n)
print(list(filter(ok, range(299)))) # Michael S. Branicky, Sep 19 2021
(Python)
def A011539(n):
def f(x):
l = (s:=str(x)).find('9')
if l >= 0: s = s[:l]+'8'*(len(s)-l)
return n+int(s, 9)
m, k = n, f(n)
while m != k: m, k = k, f(k)
return m # Chai Wah Wu, Dec 04 2024
CROSSREFS
Cf. A088924 (number of n-digit terms).
Cf. Numbers with at least one digit b-1 in base b : A074940 (b=3), A337250 (b=4), A337572 (b=5), A333656 (b=6), A337141 (b=7), A337239 (b=8), A338090 (b=9), this sequence (b=10), A095778 (b=11).
Cf. Numbers with no digit b-1 in base b: A005836 (b=3), A023717 (b=4), A020654 (b=5), A037465 (b=6), A020657 (b=7), A037474 (b=8), A037477 (b=9), A007095 (b=10), A171397 (b=11).
Supersequence of A043525.
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved