The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”). Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007932 Numbers that contain only 1's, 2's and 3's. 14
 1, 2, 3, 11, 12, 13, 21, 22, 23, 31, 32, 33, 111, 112, 113, 121, 122, 123, 131, 132, 133, 211, 212, 213, 221, 222, 223, 231, 232, 233, 311, 312, 313, 321, 322, 323, 331, 332, 333, 1111, 1112, 1113, 1121, 1122, 1123, 1131, 1132, 1133, 1211, 1212, 1213, 1221 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This sequence is the alternate number system in base 3. - Robert R. Forslund (forslund(AT)tbaytel.net), Jun 27 2003 a(n) is the "bijective base-k numeration" or "k-adic notation" for k=3. - Chris Gaconnet (gaconnet(AT)gmail.com), May 27 2009 a(n) = n written in base 3 where zeros are not allowed but threes are. The three distinct digits used are 1, 2 and 3 instead of 0, 1 and 2. To obtain this sequence from the "canonical" base 3 sequence with zeros allowed, just replace any 0 with a 3 and then subtract one from the group of digits situated on the left: (20-->13; 100-->23; 110-->33; 1000-->223; 1010-->233). This can be done in any integer positive base b, replacing zeros with positive b's and subtracting one from the group of digits situated on the left. And zero is the only digit that can be replaced, since there is always a more significant digit greater than 0, on the left, from which to subtract one. - Robin Garcia, Jan 07 2014 REFERENCES K. Atanassov, On the 97th, 98th and the 99th Smarandache Problems, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 5 (1999), No. 3, 89-93. A. Salomaa, Formal Languages, Academic Press, 1973. pages 90-91. [From Chris Gaconnet (gaconnet(AT)gmail.com), May 27 2009] LINKS Hieronymus Fischer, Table of n, a(n) for n = 1..10000 K. Atanassov, On Some of Smarandache's Problems Robert R. Forslund, A Logical Alternative to the Existing Positional Number System, Southwest Journal of Pure and Applied Mathematics. Vol. 1 1995 pp. 27-29. James E. Foster, A Number System without a Zero-Symbol, Mathematics Magazine, Vol. 21, No. 1. (1947), pp. 39-41. F. Smarandache, Only Problems, Not Solutions!. Wikipedia, Bijective numeration FORMULA From Hieronymus Fischer, May 30 2012 and Jun 08 2012: (Start) The formulas are designed to calculate base-10 numbers only using the digits 1, 2, 3. a(n) = Sum_{j=0..m-1} (1 + b(j) mod 3)*10^j, where m = floor(log_3(2*n+1)), b(j) = floor((2*n+1-3^m)/(2*3^j)). Special values: a(k*(3^n-1)/2) = k*(10^n-1)/9, k=1,2,3. a((5*3^n-3)/2) = (4*10^n-1)/3 = 10^n + (10^n-1)/3. a((3^n-1)/2 - 1) = (10^(n-1)-1)/3, n>1. Inequalities: a(n) <= (10^log_3(2*n+1)-1)/9, equality holds for n=(3^k-1)/2, k>0. a(n) > (3/10)*(10^log_3(2*n+1)-1)/9, n>0. Lower and upper limits: lim inf a(n)/10^log_3(2*n) = 1/30, for n --> infinity. lim sup a(n)/10^log_3(2*n) = 1/9, for n --> infinity. G.f.: g(x) = (x^(1/2)*(1-x))^(-1) Sum_{j=>0} 10^j*(x^3^j)^(3/2) * (1-x^3^j)*(1 + 2x^3^j + 3x^(2*3^j))/(1 - x^3^(j+1)). Also: g(x) = (1/(1-x)) Sum_{j>=0} (1 - 4(x^3^j)^3 + 3(x^3^j)^4)*x^3^j*f_j(x)/(1-x^3^j), where f_j(x) = 10^j*x^((3^j-1)/2)/(1-(x^3^j)^3). The f_j obey the recurrence f_0(x) = 1/(1-x^3), f_(j+1)(x) = 10x*f_j(x^3). Also: g(x) = (1/(1-x))*(h_(3,0)(x) + h_(3,1)(x) + h_(3,2)(x) - 3*h_(3,3)(x)), where h_(3,k)(x) = Sum_{j>=0} 10^j*x^((3^(j+1)-1)/2) * (x^3^j)^k/(1-(x^3^j)^3). (End) EXAMPLE a(100)  = 3131. a(10^3) = 323231. a(10^4) = 111123331. a(10^5) = 11231311131. a(10^6) = 1212133131231. a(10^7) = 123133223331331. a(10^8) = 13221311111312131. a(10^9) = 2113123122313232231. - Hieronymus Fischer, Jun 06 2012 MATHEMATICA NextNbr[n_] := Block[{d = IntegerDigits[n + 1], l}, l = Length[d]; While[l != 1, If[ d[[l]] > 3, d[[l - 1]]++; d[[l]] = 1]; l-- ]; If[ d[] > 3, d[] = 11]; FromDigits[d]]; NestList[ NextNbr, 1, 51] Table[FromDigits/@Tuples[{1, 2, 3}, n], {n, 4}]//Flatten (* Harvey P. Dale, Mar 29 2018 *) PROG (PARI) a(n) = my (w=3); while (n>w, n -= w; w *= 3); my (d=digits(w+n-1, 3)); d = 0; fromdigits(d) + (10^(#d-1)-1)/9 \\ Rémy Sigrist, Aug 28 2018 CROSSREFS Cf. A007931, A052382, A084544, A084545, A046034, A089581, A084984, A001742, A001743, A001744, A202267, A202268, A014261, A014263. Sequence in context: A265563 A265547 A130803 * A334054 A035122 A085305 Adjacent sequences:  A007929 A007930 A007931 * A007933 A007934 A007935 KEYWORD nonn,base,easy AUTHOR R. Muller EXTENSIONS Edited and extended by Robert G. Wilson v, Dec 14 2002 Crossrefs added by Hieronymus Fischer, Jun 06 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 16:44 EST 2021. Contains 349430 sequences. (Running on oeis4.)