login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that contain only 1's, 2's and 3's.
15

%I #65 Aug 29 2018 03:02:20

%S 1,2,3,11,12,13,21,22,23,31,32,33,111,112,113,121,122,123,131,132,133,

%T 211,212,213,221,222,223,231,232,233,311,312,313,321,322,323,331,332,

%U 333,1111,1112,1113,1121,1122,1123,1131,1132,1133,1211,1212,1213,1221

%N Numbers that contain only 1's, 2's and 3's.

%C This sequence is the alternate number system in base 3. - Robert R. Forslund (forslund(AT)tbaytel.net), Jun 27 2003

%C a(n) is the "bijective base-k numeration" or "k-adic notation" for k=3. - Chris Gaconnet (gaconnet(AT)gmail.com), May 27 2009

%C a(n) = n written in base 3 where zeros are not allowed but threes are. The three distinct digits used are 1, 2 and 3 instead of 0, 1 and 2. To obtain this sequence from the "canonical" base 3 sequence with zeros allowed, just replace any 0 with a 3 and then subtract one from the group of digits situated on the left: (20-->13; 100-->23; 110-->33; 1000-->223; 1010-->233). This can be done in any integer positive base b, replacing zeros with positive b's and subtracting one from the group of digits situated on the left. And zero is the only digit that can be replaced, since there is always a more significant digit greater than 0, on the left, from which to subtract one. - _Robin Garcia_, Jan 07 2014

%D K. Atanassov, On the 97th, 98th and the 99th Smarandache Problems, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 5 (1999), No. 3, 89-93.

%D A. Salomaa, Formal Languages, Academic Press, 1973. pages 90-91. [From Chris Gaconnet (gaconnet(AT)gmail.com), May 27 2009]

%H Hieronymus Fischer, <a href="/A007932/b007932.txt">Table of n, a(n) for n = 1..10000</a>

%H K. Atanassov, <a href="http://www.gallup.unm.edu/~smarandache/Atanassov-SomeProblems.pdf">On Some of Smarandache's Problems</a>

%H EMIS, <a href="http://www.emis.de/journals/SWJPAM/vol1-95.html">Mirror site for Southwest Journal of Pure and Applied Mathematics</a>

%H Robert R. Forslund, <a href="http://www.emis.de/journals/SWJPAM/Vol1_1995/rrf01.ps">A Logical Alternative to the Existing Positional Number System</a>, Southwest Journal of Pure and Applied Mathematics. Vol. 1 1995 pp. 27-29.

%H James E. Foster, <a href="http://www.jstor.org/stable/3029479">A Number System without a Zero-Symbol</a>, Mathematics Magazine, Vol. 21, No. 1. (1947), pp. 39-41.

%H F. Smarandache, <a href="http://www.gallup.unm.edu/~smarandache/OPNS.pdf">Only Problems, Not Solutions!</a>.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Bijective_numeration">Bijective numeration</a>

%H <a href="/index/Ar#10-automatic">Index entries for 10-automatic sequences</a>.

%F From _Hieronymus Fischer_, May 30 2012 and Jun 08 2012: (Start)

%F The formulas are designed to calculate base-10 numbers only using the digits 1, 2, 3.

%F a(n) = Sum_{j=0..m-1} (1 + b(j) mod 3)*10^j,

%F where m = floor(log_3(2*n+1)), b(j) = floor((2*n+1-3^m)/(2*3^j)).

%F Special values:

%F a(k*(3^n-1)/2) = k*(10^n-1)/9, k=1,2,3.

%F a((5*3^n-3)/2) = (4*10^n-1)/3 = 10^n + (10^n-1)/3.

%F a((3^n-1)/2 - 1) = (10^(n-1)-1)/3, n>1.

%F Inequalities:

%F a(n) <= (10^log_3(2*n+1)-1)/9, equality holds for n=(3^k-1)/2, k>0.

%F a(n) > (3/10)*(10^log_3(2*n+1)-1)/9, n>0.

%F Lower and upper limits:

%F lim inf a(n)/10^log_3(2*n) = 1/30, for n --> infinity.

%F lim sup a(n)/10^log_3(2*n) = 1/9, for n --> infinity.

%F G.f.: g(x) = (x^(1/2)*(1-x))^(-1) Sum_{j=>0} 10^j*(x^3^j)^(3/2) * (1-x^3^j)*(1 + 2x^3^j + 3x^(2*3^j))/(1 - x^3^(j+1)).

%F Also: g(x) = (1/(1-x)) Sum_{j>=0} (1 - 4(x^3^j)^3 + 3(x^3^j)^4)*x^3^j*f_j(x)/(1-x^3^j), where f_j(x) = 10^j*x^((3^j-1)/2)/(1-(x^3^j)^3). The f_j obey the recurrence f_0(x) = 1/(1-x^3), f_(j+1)(x) = 10x*f_j(x^3).

%F Also: g(x) = (1/(1-x))*(h_(3,0)(x) + h_(3,1)(x) + h_(3,2)(x) - 3*h_(3,3)(x)), where h_(3,k)(x) = Sum_{j>=0} 10^j*x^((3^(j+1)-1)/2) * (x^3^j)^k/(1-(x^3^j)^3).

%F (End)

%e a(100) = 3131.

%e a(10^3) = 323231.

%e a(10^4) = 111123331.

%e a(10^5) = 11231311131.

%e a(10^6) = 1212133131231.

%e a(10^7) = 123133223331331.

%e a(10^8) = 13221311111312131.

%e a(10^9) = 2113123122313232231.

%e - _Hieronymus Fischer_, Jun 06 2012

%t NextNbr[n_] := Block[{d = IntegerDigits[n + 1], l}, l = Length[d]; While[l != 1, If[ d[[l]] > 3, d[[l - 1]]++; d[[l]] = 1]; l-- ]; If[ d[[1]] > 3, d[[1]] = 11]; FromDigits[d]]; NestList[ NextNbr, 1, 51]

%t Table[FromDigits/@Tuples[{1,2,3},n],{n,4}]//Flatten (* _Harvey P. Dale_, Mar 29 2018 *)

%o (PARI) a(n) = my (w=3); while (n>w, n -= w; w *= 3); my (d=digits(w+n-1, 3)); d[1] = 0; fromdigits(d) + (10^(#d-1)-1)/9 \\ _Rémy Sigrist_, Aug 28 2018

%Y Cf. A007931, A052382, A084544, A084545, A046034, A089581, A084984, A001742, A001743, A001744, A202267, A202268, A014261, A014263.

%K nonn,base,easy

%O 1,2

%A R. Muller

%E Edited and extended by _Robert G. Wilson v_, Dec 14 2002

%E Crossrefs added by _Hieronymus Fischer_, Jun 06 2012