login
A002397
a(n) = n! * lcm({1, 2, ..., n+1}).
(Formerly M2036 N0807)
13
1, 2, 12, 72, 1440, 7200, 302400, 4233600, 101606400, 914457600, 100590336000, 1106493696000, 172613016576000, 2243969215488000, 31415569016832000, 942467070504960000, 256351043177349120000, 4357967734014935040000, 1490424965033107783680000
OFFSET
0,2
COMMENTS
This term appears in the numerator of several sequences of coefficients used in numerical solutions of ordinary differential equations.
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = n! * lcm{1,2,...,n+1} = n!*A003418(n+1). - Sean A. Irvine, Nov 07 2013
EXAMPLE
5! is 120, and the least common multiple of 2, 3, 4, 5 and 6 is 60, so a(5) = 7200.
PROG
(PARI) a(n) = n!*lcm([1..n+1]); \\ Michel Marcus, Oct 15 2023
CROSSREFS
Cf. A010796. Row sums of A260780, also of A260781.
The following sequences are taken from page 231 of Pickard (1964): A002397, A002398, A002399, A002400, A002401, A002402, A002403, A002404, A002405, A002406, A260780, A260781.
Sequence in context: A002867 A235359 A130426 * A163085 A328946 A037515
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Nov 07 2013
More terms from Jack W Grahl, Feb 27 2021
STATUS
approved