OFFSET
0,3
COMMENTS
Similar to superprimorials (A006939), but a term of the sequence is a product of primorials of consecutive integers, not consecutive primes. So after 2# each primorial will repeat at least twice in the product. Also similar to superprimorials in that the exponents of the primes decrease linearly, but here it is linearly in p, not in pi(p).
FORMULA
EXAMPLE
a(7) = 1# * 2# * 3# * 4# * 5# * 6# * 7# = 1*2*(2*3)*(2*3)*(2*3*5)*(2*3*5)*(2*3*5*7) = 2^6 * 3^5 * 5^3 * 7^1. Note that in the prime factorization the sum of each prime and its exponent is constant and equal to 7+1 = 8.
a(23) = 2^22 * 3^21 * 5^19 * 7^17 * 11^13 * 13^11 * 17^7 * 19^5 * 23^1. Here each prime and its exponent add to 24.
MAPLE
b:= proc(n) option remember; `if`(n=0, [1$2], (p-> (h->
[h, h*p[2]])(`if`(isprime(n), n, 1)*p[1]))(b(n-1)))
end:
a:= n-> b(n)[2]:
seq(a(n), n=0..16); # Alois P. Heinz, Nov 11 2020
MATHEMATICA
b[n_] := b[n] = If[n==0, {1, 1}, Function[p, Function[h, {h, h p[[2]]}][If[ PrimeQ[n], n, 1] p[[1]]]][b[n - 1]]];
a[n_] := b[n][[2]];
a /@ Range[0, 16] (* Jean-François Alcover, Nov 30 2020, after Alois P. Heinz *)
PROG
(PARI) primo(n) = lcm(primes([2, n])); \\ A034386
a(n) = prod(k=1, n, primo(k)); \\ Michel Marcus, Nov 01 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
David S. Metzler, Oct 31 2019
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Nov 11 2020
STATUS
approved