login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328945
Numbers m that are neither arithmetic (A003601) nor harmonic (A001599).
2
2, 4, 8, 9, 10, 12, 16, 18, 24, 25, 26, 32, 34, 36, 40, 48, 50, 52, 58, 63, 64, 72, 74, 75, 76, 80, 81, 82, 84, 88, 90, 98, 100, 104, 106, 108, 112, 117, 120, 121, 122, 124, 128, 130, 136, 144, 146, 148, 152, 156, 160, 162, 170, 171, 172, 175, 176, 178, 180
OFFSET
1,1
COMMENTS
Numbers m such that neither the arithmetic mean of the divisors of m nor the harmonic mean of the divisors of m is an integer.
Numbers m such that neither A(m) = A000203(m)/A000005(m) nor H(m) = m * A000005(m)/A000203(m) is an integer.
Corresponding values of A(m): 3/2, 7/3, 15/4, 13/3, 9/2, 14/3, 31/5, 13/2, 15/2, 31/3, 21/2, 21/2, 27/2, ...
Corresponding values of H(m): 4/3, 12/7, 32/15, 27/13, 20/9, 18/7, 80/31, 36/13, 16/5, 75/31, 52/21, 64/21, ...
LINKS
MAPLE
filter:= proc(n) local D, d, t;
D:=numtheory:-divisors(n);
d:= nops(D);
convert(D, `+`) mod d <> 0 and not ((d/add(1/t, t=D))::integer)
end proc:
select(filter, [$1..200]); # Robert Israel, Dec 14 2023
MATHEMATICA
Select[Range[180], !Divisible[DivisorSigma[1, #], DivisorSigma[0, #]] && !Divisible[# * DivisorSigma[0, #], DivisorSigma[1, #]] &] (* Amiram Eldar, Nov 01 2019 *)
PROG
(Magma) [m: m in [1..10^5] | not IsIntegral(m * NumberOfDivisors(m) / SumOfDivisors(m)) and not IsIntegral(SumOfDivisors(m) / NumberOfDivisors(m))]
(PARI) isok(m) = my(f = factor(m), prd = sigma(f)/numdiv(f)); (denominator(prd) != 1) && (denominator(m/prd) != 1); \\ Michel Marcus, Nov 05 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Oct 31 2019
STATUS
approved