login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328947
Numbers formed from decimal digits 0 and/or 1 which are divisible by 7.
1
0, 1001, 10010, 10101, 11011, 100100, 101010, 101101, 110110, 111111, 1000111, 1001000, 1010100, 1011010, 1011101, 1100001, 1101100, 1110011, 1111110, 10000011, 10001110, 10010000, 10011001, 10100111, 10101000, 10110100, 10111010, 10111101, 11000010, 11000101, 11001011, 11010111, 11011000
OFFSET
1,2
COMMENTS
If x and y are members of the sequence and 10^k > y, then 10^k*x+y is a member.
The number of terms of up to k digits is A263366(k-1).
EXAMPLE
a(3)=10010 is in the sequence because it is divisible by 7 and each of its decimal digits is 0 or 1.
MAPLE
bintodec:= proc(n) local L, i; L:= convert(n, base, 2); add(10^(i-1)*L[i], i=1..nops(L)) end proc:
select(t -> t mod 7 = 0, map(bintodec, [$0..1000]));
PROG
(Magma) a:=[]; f:=func<n|Seqint(Intseq(Seqint(Intseq(n), 10), 2))>; for k in [0..220] do if f(k) mod 7 eq 0 then Append(~a, f(k)); end if; end for; a; // Marius A. Burtea, Nov 01 2019
(Python)
A328947_list = [n for n in (int(bin(m)[2:]) for m in range(10**4)) if not n % 7] # Chai Wah Wu, Nov 01 2019
CROSSREFS
Intersection of A007088 and A008589.
Cf. A263366.
Sequence in context: A100709 A372419 A130600 * A114387 A357774 A204965
KEYWORD
nonn,base
AUTHOR
Robert Israel, Oct 31 2019
STATUS
approved