login
A002867
a(n) = binomial(n,floor(n/2))*(n+1)!.
(Formerly M2035 N0806)
3
1, 2, 12, 72, 720, 7200, 100800, 1411200, 25401600, 457228800, 10059033600, 221298739200, 5753767219200, 149597947699200, 4487938430976000, 134638152929280000, 4577697199595520000, 155641704786247680000
OFFSET
0,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
FORMULA
a(n) = 2^n * A000246(n+1).
E.g.f.: 1/(sqrt(1+2*x)*(1-2*x)^(3/2)) = 1/(sqrt(1-4*x^2)*(1-2*x)). - Paul Barry, Jul 22 2005
Conjecture: a(n) - 2*a(n-1) - 4*n*(n-1)*a(n-2) = 0. - R. J. Mathar, Nov 24 2012
MATHEMATICA
Table[Binomial[n, Floor[n/2]](n+1)!, {n, 0, 20}] (* Harvey P. Dale, Sep 04 2018 *)
CROSSREFS
Cf. A000246.
Sequence in context: A335786 A005443 A362796 * A235359 A130426 A002397
KEYWORD
nonn,easy
EXTENSIONS
More terms from James A. Sellers, Jul 10 2000
STATUS
approved