

A002868


Largest number in nth row of triangle of Lah numbers (A008297 and A271703).
(Formerly M1703 N0673)


24



1, 1, 2, 6, 36, 240, 1800, 15120, 141120, 1693440, 21772800, 299376000, 4390848000, 68497228800, 1133317785600, 19833061248000, 396661224960000, 8299373322240000, 181400588328960000, 4135933413900288000, 98228418580131840000, 2426819753156198400000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..100
Victor Meally, Comparison of several sequences given in Motzkin's paper "Sorting numbers for cylinders...", letter to N. J. A. Sloane, N. D.
T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167176. [Annotated, scanned copy]
OEIS Wiki, Sorting numbers


FORMULA

For 2 <= n <= 7, equals (n+1)!*n/2.  Alexander R. Povolotsky, Oct 16 2006


MAPLE

with(combinat): for n from 0 to 35 do big := 1: for m from 1 to n do if big < n!*binomial(n1, m1)/m! then big := n!*binomial(n1, m1)/m! fi: od: printf(`%d, `, big): od:


MATHEMATICA

a[n_] := ( big = 1; For[ m = 1 , m <= n, m++, b = n!*Binomial[n  1, m  1]/m!; If[ big < b , big = b ]]; big); Table[a[n], {n, 0, 19}] (* JeanFrançois Alcover, Sep 21 2012, after Maple *)


PROG

(Haskell)
a002868 n = if n == 0 then 1 else maximum $ map abs $ a008297_row n
 Reinhard Zumkeller, Sep 30 2014


CROSSREFS

Essentially the same as A001286.
Cf. A000262, A008297, A105278, A271703.
Sequence in context: A239889 A086325 A074424 * A002869 A052845 A293120
Adjacent sequences: A002865 A002866 A002867 * A002869 A002870 A002871


KEYWORD

nonn,nice,easy


AUTHOR

N. J. A. Sloane


EXTENSIONS

More terms from James A. Sellers, Jan 03 2001


STATUS

approved



