login
A086325
Let u(1)=0, u(2)=1, u(k)=u(k-1)+u(k-2)/(k-2); then a(n)=n!*u(n).
(Formerly N0672)
2
0, 2, 6, 36, 220, 1590, 12978, 118664, 1201464, 13349610, 161530270, 2114578092, 29780308116, 448995414686, 7215997736010, 123153028027920, 2224451568754288, 42395429898611154, 850263899633257014, 17900292623858042420, 394701452356069835340, 9096928711444657157382, 218739785834282892557026
OFFSET
1,2
REFERENCES
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263, Table 7.5.1, row 3.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 210, Table 3, Three-line Latin rectangles.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
LINKS
Gerzson Kéri, The factorization of compressed Chebyshev polynomials and other polynomials related to multiple-angle formulas, Annales Univ. Sci. Budapest (Hungary, 2022) Sect. Comp., Vol. 53, 93-108.
FORMULA
a(n) = ceiling(n*n!/e) - (1-(-1)^n)/2.
E.g.f.: x^2*exp(-x)/(1-x)^2. - Vladeta Jovovic, Nov 20 2003
a(n) = n*floor((n!+1)/e). [Gary Detlefs, Jul 13 2010]
a(n) = n * A000166(n). [Joerg Arndt, Jul 09 2012]
G.f.: x*f'(x), where f(x) = 1/(1 + x) + Sum_{k>=1} k^k*x^k/(1 + (k + 1)*x)^(k+1). - Ilya Gutkovskiy, Apr 13 2017
MAPLE
a:=n->n!*add((-1)^k/k!, k=0..n): seq(a(n)*n, n=1..19); # Zerinvary Lajos, Dec 18 2007
with (combstruct):with (combinat):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, card>=m))}, labeled]; end: ZLL:=a(2):seq(count(ZLL, size=n)*fibonacci(2, n), n=1..19); # Zerinvary Lajos, Jun 11 2008
with (combstruct):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, card>=m))}, labeled]; end: ZLL:=a(2):seq(count(ZLL, size=n)*n, n=1..19); # Zerinvary Lajos, Jun 11 2008
MATHEMATICA
Table[Subfactorial[n]*n, {n, 1, 19}] (* Zerinvary Lajos, Jul 09 2009 *)
PROG
(PARI) a(n) = n*((n! + 1)\exp(1)); \\ Indranil Ghosh, Apr 13 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane. This sequence appeared in the 1973 "Handbook", but was then omitted from the database. Resubmitted by Benoit Cloitre, Aug 30 2003. Entry revised by N. J. A. Sloane, Jun 11 2012
STATUS
approved