login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000704
Number of degree-n even permutations of order dividing 2.
(Formerly M3511 N1427)
17
1, 1, 1, 1, 4, 16, 46, 106, 316, 1324, 5356, 18316, 63856, 272416, 1264264, 5409496, 22302736, 101343376, 507711376, 2495918224, 11798364736, 58074029056, 309240315616, 1670570920096, 8792390355904, 46886941456576, 264381946998976, 1533013006902976
OFFSET
0,5
COMMENTS
Number of odd partitions of an n-element set avoiding the pattern 123 (see Goyt paper). - Ralf Stephan, May 08 2007
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, Inc. New York, 1958 (Chap. 4, Problem 22).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Lev Glebsky, Melany Licón, Luis Manuel Rivera, On the number of even roots of permutations, arXiv:1907.00548 [math.CO], 2019.
A. M. Goyt, Avoidance of partitions of a 3-element set, arXiv:math/0603481 [math.CO], 2006-2007.
L. Moser and M. Wyman, On solutions of x^d = 1 in symmetric groups, Canad. J. Math., 7 (1955), 159-168.
FORMULA
E.g.f.: exp(x)*cosh(x^2/2).
a(n) = Sum_{i = 0..floor(n/4)} C(n, 4i)*(4i-1)!!. - Ralf Stephan, May 08 2007 [Corrected by Sean A. Irvine, Mar 01 2011]
Conjecture: a(n) -3*a(n-1) +3*a(n-2) -a(n-3) -(n-1)*(n-3)*a(n-4) +(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Jun 03 2014
MATHEMATICA
a[n_] := Sum[(4i - 1)!! Binomial[n, 4i], {i, 0, n/4}]; Array[a, 30, 0] (* Robert G. Wilson v *)
With[{nn = 30}, CoefficientList[Series[Exp[x]Cosh[x^2/2], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Nov 29 2013 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace( exp(x)*cosh(x^2/2) )) \\ G. C. Greubel, Jul 02 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x)*Cosh(x^2/2) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 02 2019
(Sage) m = 30; T = taylor(exp(x)*cosh(x^2/2), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Jul 02 2019
CROSSREFS
Sequence in context: A213480 A306302 A159940 * A374320 A374262 A007315
KEYWORD
nonn,easy
EXTENSIONS
More terms from Harvey P. Dale, Nov 29 2013
STATUS
approved