login
A000706
Expansion of modular function 1/E_3 (cf. A013973).
(Formerly M5458 N2367)
11
1, 504, 270648, 144912096, 77599626552, 41553943041744, 22251789971649504, 11915647845248387520, 6380729991419236488504, 3416827666558895485479576, 1829682703808504464920468048, 979779820147442370107345764512
OFFSET
0,2
COMMENTS
Ramanujan Lambert series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).
REFERENCES
S. Ramanujan, Collected Papers of Srinivasa Ramanujan, pp. 115-7, Ed. G. H. Hardy et al., AMS Chelsea 2000, p. 317.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
S. Ramanujan, On the coefficients in the expansions of certain modular functions, Proc. Royal Soc., A, 95 (1918), 144-155 [G. H. Hardy, Coll. Papers, Vol. 1, 294-305.] - Added by N. J. A. Sloane, Feb 21 2010
FORMULA
Expansion of 1 / R(q) in powers of q where R() is a Ramanujan Lambert series.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^2*w^2 + 121*u^2*w^2 + 4096*u^2*v^2 - 8*v^3*w - 512*u*v^3 - 66*u*v*w^2 + 592*u*v^2*w - 4224*u^2*v*w. - Michael Somos, Aug 09 2007
Convolution inverse of A013973.
Asymptotics [Ramanujan]: a(n) ~ c * exp(2*Pi*n), where c = 2 / (96^2 * exp(-8*Pi/3) * Product_{j>=1} (1-exp(-4*Pi*j))^16) = 8192 * Pi^12 / (9 * Gamma(1/4)^16) = 0.943732053240742502013763912292610373458373085328537967959184338319972... . - Vaclav Kotesovec, Nov 08 2015
EXAMPLE
G.f. = 1 + 504*q + 270648*q^2 + 144912096*q^3 + 77599626552*q^4 + 41553943041744*q^5 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1 / (1 + Sum[ -504 DivisorSigma[ 5, k] q^k, {k, n}]), {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
a[ n_] := SeriesCoefficient[ With[ {t2 = EllipticTheta[ 2, 0, q]^4, t3 = EllipticTheta[ 3, 0, q]^4}, 1 / (t2^3 - 33 (t2 + t3) t2 t3 + t3^3)], {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
a[ n_] := SeriesCoefficient[ With[ {t3 = EllipticTheta[ 3, 0, q]^4, t4 = EllipticTheta[ 4, 0, q]^4}, 2 / (t3^3 - 3 (t3 - t4)^2 (t3 + t4) + t4^3) ], {q, 0, 2 n}]; (* Michael Somos, Apr 26 2015 *)
a[ n_] := SeriesCoefficient[ With[ {e1 = QPochhammer[ q]^8, e4 = 32 q QPochhammer[ q^4]^8}, QPochhammer[ q^2]^12 / ((e1 + e4) (e1^2 - 16 e1 e4 - 8 e4^2)) ], {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( 1 / sum(k=1, n, -504*sigma(k, 5)*x^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Aug 09 2007 */
(PARI) {a(n) = my(A, e1, e4); if( n<0, 0, A = x * O(x^n); e1 = eta(x + A)^8; e4 = 32 * x * eta(x^4 + A)^8; polcoeff( eta(x^2 + A)^12 / ((e1 + e4) * (e1^2 - 16*e1*e4 - 8*e4^2)), n))}; /* Michael Somos, Apr 26 2015 */
CROSSREFS
Sequence in context: A288851 A105097 A278308 * A289637 A226266 A377222
KEYWORD
nonn,easy
STATUS
approved