login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of degree-n even permutations of order dividing 2.
(Formerly M3511 N1427)
17

%I M3511 N1427 #47 Sep 08 2022 08:44:28

%S 1,1,1,1,4,16,46,106,316,1324,5356,18316,63856,272416,1264264,5409496,

%T 22302736,101343376,507711376,2495918224,11798364736,58074029056,

%U 309240315616,1670570920096,8792390355904,46886941456576,264381946998976,1533013006902976

%N Number of degree-n even permutations of order dividing 2.

%C Number of odd partitions of an n-element set avoiding the pattern 123 (see Goyt paper). - _Ralf Stephan_, May 08 2007

%D J. Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, Inc. New York, 1958 (Chap. 4, Problem 22).

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A000704/b000704.txt">Table of n, a(n) for n=0..200</a>

%H Lev Glebsky, Melany Licón, Luis Manuel Rivera, <a href="https://arxiv.org/abs/1907.00548">On the number of even roots of permutations</a>, arXiv:1907.00548 [math.CO], 2019.

%H A. M. Goyt, <a href="https://arxiv.org/abs/math/0603481">Avoidance of partitions of a 3-element set</a>, arXiv:math/0603481 [math.CO], 2006-2007.

%H L. Moser and M. Wyman, <a href="https://doi.org/10.4153/CJM-1955-020-0">On solutions of x^d = 1 in symmetric groups</a>, Canad. J. Math., 7 (1955), 159-168.

%F E.g.f.: exp(x)*cosh(x^2/2).

%F a(n) = Sum_{i = 0..floor(n/4)} C(n, 4i)*(4i-1)!!. - _Ralf Stephan_, May 08 2007 [Corrected by _Sean A. Irvine_, Mar 01 2011]

%F Conjecture: a(n) -3*a(n-1) +3*a(n-2) -a(n-3) -(n-1)*(n-3)*a(n-4) +(n-3)*(n-4)*a(n-5)=0. - _R. J. Mathar_, Jun 03 2014

%t a[n_] := Sum[(4i - 1)!! Binomial[n, 4i], {i, 0, n/4}]; Array[a, 30, 0] (* _Robert G. Wilson v_ *)

%t With[{nn = 30}, CoefficientList[Series[Exp[x]Cosh[x^2/2], {x, 0, nn}], x] Range[0, nn]!] (* _Harvey P. Dale_, Nov 29 2013 *)

%o (PARI) my(x='x+O('x^30)); Vec(serlaplace( exp(x)*cosh(x^2/2) )) \\ _G. C. Greubel_, Jul 02 2019

%o (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x)*Cosh(x^2/2) )); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, Jul 02 2019

%o (Sage) m = 30; T = taylor(exp(x)*cosh(x^2/2), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # _G. C. Greubel_, Jul 02 2019

%K nonn,easy

%O 0,5

%A _N. J. A. Sloane_ and _J. H. Conway_

%E More terms from _Harvey P. Dale_, Nov 29 2013