OFFSET
7,1
COMMENTS
This sequence, U_n in Guy's 1958 paper, counts triangulations of a regular n-gon into n-2 triangles with no nonidentity symmetries. Triangulations related by a symmetry of the underlying n-gon do not count as distinct. - Joseph Myers, Jun 21 2012
REFERENCES
R. K. Guy, Dissecting a polygon into triangles, Bull. Malayan Math. Soc., Vol. 5, pp. 57-60, 1958.
R. K. Guy, Dissecting a polygon into triangles, Research Paper #9, Math. Dept., Univ. Calgary, 1967.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Joseph Myers, Table of n, a(n) for n = 7..1000
S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751.
S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751. [Annotated scanned copy]
R. K. Guy, Dissecting a polygon into triangles, Research Paper #9, Math. Dept., Univ. Calgary, 1967. [Annotated scanned copy]
FORMULA
a(n) = (Catalan(n-2) - (n/2)*Catalan(n/2 - 1) - n*Catalan(floor(n/2) - 1) - (n/3)*Catalan(n/3 - 1) + n*Catalan(n/4 - 1) + n*Catalan(n/6 - 1))/(2*n), where Catalan(x) = 0 for noninteger x (derived from Guy's 1958 paper). - Joseph Myers, Jun 21 2012
MATHEMATICA
catalan[n_] := Block[{c = Binomial[2 n, n]/(n + 1)}, If[IntegerQ[c], c, 0]]; f[n_] := (catalan[n - 2] - (n/2) catalan[n/2 - 1] - n*catalan[Floor[n/2] - 1] - (n/3)*catalan[n/3 - 1] + n*catalan[n/4 - 1] + n*catalan[n/6 - 1])/(2 n); Array[f, 28, 7] (* Robert G. Wilson v, Jun 23 2014 *)
PROG
(PARI) C(n)=if(denominator(n)==1, binomial(2*n, n)/(n+1), 0)
a(n)=(C(n-2)/n-C(n/2-1)/2-C(n\2-1)-C(n/3-1)/3+C(n/4-1)+C(n/6-1))/2 \\ Charles R Greathouse IV, Apr 05 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended by Joseph Myers, Jun 21 2012
STATUS
approved