login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328041
Number of parts in all proper floor(n/2)-times partitions of n.
2
0, 1, 2, 5, 21, 61, 461, 1652, 17487, 76264, 1002835, 5207742, 88664398, 515821495, 10184805624, 69200406679, 1610282904928, 12024183111167, 318978837371853, 2653055962437988, 79332250069994262, 725413309833320933, 23919660963588169669, 238830233430136549070
OFFSET
0,3
LINKS
FORMULA
a(n) = A327631(n,floor(n/2)).
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
`if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+
(h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
b(n-i, min(n-i, i), k)))(b(i$2, k-1))))
end:
a:= n-> (k-> add(b(n$2, i)[2]*(-1)^(k-i)
*binomial(k, i), i=0..k))(iquo(n, 2)):
seq(a(n), n=0..23);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n==0, {1, 0}, If[k==0, {1, 1}, If[i<2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]];
a[n_] := With[{k = Quotient[n, 2]}, Sum[b[n, n, i][[2]] (-1)^(k - i)* Binomial[k, i], {i, 0, k}]];
a /@ Range[0, 23] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)
CROSSREFS
Cf. A327631.
Sequence in context: A359725 A000941 A000131 * A242785 A359672 A228385
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 02 2019
STATUS
approved