The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A328042 Number of parts in all proper twice partitions of n. 3
 3, 21, 61, 205, 474, 1246, 2723, 6277, 12961, 28682, 56976, 118919, 234715, 473988, 913011, 1807211, 3430048, 6648397, 12500170, 23764885, 44174088, 83090853, 152803509, 283387971, 517516615, 949775754, 1719088271, 3127641937, 5618833687, 10133255636 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 3..5000 (terms 3..2000 from Alois P. Heinz) MAPLE b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],      `if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+          (h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*         b(n-i, min(n-i, i), k)))(b(i\$2, k-1))))     end: a:= n-> (k-> add(b(n\$2, i)[2]*(-1)^(k-i)*binomial(k, i), i=0..k))(2): seq(a(n), n=3..35); MATHEMATICA b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i < 2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/ h[[1]]}][h[[1]] b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]]; a[n_] := With[{k = 2}, Sum[b[n, n, i][[2]] (-1)^(k-i) Binomial[k, i], {i, 0, k}]]; a /@ Range[3, 35] (* Jean-François Alcover, Dec 10 2020, after Alois P. Heinz *) CROSSREFS Column k=2 of A327631. Cf. A327769. Sequence in context: A181156 A162394 A129212 * A331082 A117984 A050615 Adjacent sequences:  A328039 A328040 A328041 * A328043 A328044 A328045 KEYWORD nonn AUTHOR Alois P. Heinz, Oct 02 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 14 22:40 EDT 2021. Contains 343909 sequences. (Running on oeis4.)