The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000134 Positive zeros of Bessel function of order 0 rounded to nearest integer. (Formerly M1570 N0613) 2
 2, 6, 9, 12, 15, 18, 21, 24, 27, 31, 34, 37, 40, 43, 46, 49, 53, 56, 59, 62, 65, 68, 71, 75, 78, 81, 84, 87, 90, 93, 97, 100, 103, 106, 109, 112, 115, 119, 122, 125, 128, 131, 134, 137, 141, 144, 147, 150, 153, 156, 159, 163, 166, 169, 172, 175, 178, 181, 185, 188 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 409. British Association Mathematical Tables, Vol. 6, Bessel Functions, Part 1, Functions of Order Zero and Unity. Cambridge Univ. Press, 1937, p. 171. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS David W. Wilson, Table of n, a(n) for n = 1..1000 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. FORMULA a(n) = Pi*n + O(1). Probably a(n+1) - a(n) is 3 or 4 for all n. - Charles R Greathouse IV, Oct 04 2016 MATHEMATICA Table[BesselJZero[0, n] // Round, {n, 1, 40}] (* Jean-François Alcover, Feb 04 2016 *) PROG (PARI) a(n)=if(n<1, 0, n=a(n-1); until(besselj(0, n-1/2)*besselj(0, n+1/2)<0, n++); n) CROSSREFS Sequence in context: A287445 A119720 A173978 * A120701 A350235 A189752 Adjacent sequences: A000131 A000132 A000133 * A000135 A000136 A000137 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 1 16:47 EDT 2023. Contains 361695 sequences. (Running on oeis4.)