OFFSET
0,7
REFERENCES
Busacker and Saaty, Finite Graphs and Networks, 1965, p. 201 (they reproduce Cayley's mistakes).
A. Cayley, "On the mathematical theory of isomers", Phil. Mag. vol. 67 (1874), 444-447.
A. Cayley, "Über die analytischen Figuren, welche in der Mathematik Baeume genannt werden...", Chem. Ber. 8 (1875), 1056-1059.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..60
Jean-François Alcover, Mathematica program translated from N. J. A. Sloane's Maple program for A000022, A000200, A000598, A000602, A000678
Henry Bottomley, Illustration of initial terms of A000022, A000200, A000602
A. Cayley, Über die analytischen Figuren, welche in der Mathematik Bäume genannt werden und ihre Anwendung auf die Theorie chemischer Verbindungen, Chem. Ber. 8 (1875), 1056-1059. (Annotated scanned copy)
E. M. Rains and N. J. A. Sloane, On Cayley's Enumeration of Alkanes (or 4-Valent Trees), J. Integer Sequences, Vol. 2 (1999), Article 99.1.1.
MAPLE
N := 45: for i from 1 to N do tt := t[ i ]-t[ i-1 ]; b[ i ] := series((tt^2+subs(z=z^2, tt))/2+O(z^(N+1)), z, 200): od: i := 'i': bicent := series(sum(b[ i ], i=1..N), z, 200); G000200 := bicent; A000200 := n->coeff(G000200, z, n);
# Maple code continues from A000022: bicentered == unordered pair of ternary trees of the same height:
MATHEMATICA
n = 40; (* algorithm from Rains and Sloane *)
S3[f_, h_, x_] := f[h, x]^3/6 + f[h, x] f[h, x^2]/2 + f[h, x^3]/3;
T[-1, z_] := 1; T[h_, z_] := T[h, z] = Table[z^k, {k, 0, n}].Take[CoefficientList[z^(n+1) + 1 + S3[T, h-1, z]z, z], n+1];
Sum[Take[CoefficientList[z^(n+1) + (T[h, z] - T[h-1, z])^2/2 + (T[h, z^2] - T[h-1, z^2])/2, z], n+1], {h, 0, n/2}] (* Robert A. Russell, Sep 15 2018 *)
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
N. J. A. Sloane, E. M. Rains (rains(AT)caltech.edu)
STATUS
approved