This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000199 Coefficient of q^(2n-1) in the series expansion of Ramanujan's mock theta function f(q). (Formerly M2285 N0904) 5
 1, 3, 3, 7, 6, 12, 13, 20, 21, 34, 36, 51, 58, 78, 89, 118, 131, 171, 197, 245, 279, 349, 398, 486, 557, 671, 767, 920, 1046, 1244, 1421, 1667, 1898, 2225, 2525, 2937, 3333, 3856, 4367, 5034, 5683, 6521, 7365, 8409, 9473, 10795, 12133, 13775, 15466 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 1..1001 L. A. Dragonette, Some Asymptotic Formulae for the Mock Theta Series of Ramanujan, Trans. Amer. Math. Soc., 72 (1952), 474-500. Eric Weisstein's World of Mathematics, Mock Theta Function. MATHEMATICA f[q_, s_] := Sum[q^(n^2)/Product[1+q^k, {k, n}]^2, {n, 0, s}]; Take[CoefficientList[Series[f[q, 100 ], {q, 0, 100}], q], {2, -1, 2}] PROG (PARI) a(n)=if(n<1, 0, polcoeff(1+sum(k=1, sqrtint(2*n-1), x^k^2/prod(i=1, k, 1+x^i, 1+O(x^(2*n-1)))^2), 2*n-1)) CROSSREFS A000025(2n-1)=a(n). Cf. A000039. Sequence in context: A078708 A096273 A069981 * A243099 A201932 A161771 Adjacent sequences:  A000196 A000197 A000198 * A000200 A000201 A000202 KEYWORD nonn AUTHOR EXTENSIONS More terms from Eric W. Weisstein STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 00:17 EST 2017. Contains 295954 sequences.