login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000025 Coefficients of the 3rd order mock theta function f(q).
(Formerly M0433 N0164)
17
1, 1, -2, 3, -3, 3, -5, 7, -6, 6, -10, 12, -11, 13, -17, 20, -21, 21, -27, 34, -33, 36, -46, 51, -53, 58, -68, 78, -82, 89, -104, 118, -123, 131, -154, 171, -179, 197, -221, 245, -262, 279, -314, 349, -369, 398, -446, 486, -515, 557, -614, 671, -715, 767, -845, 920, -977, 1046, -1148, 1244 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) = number of partitions of n with even rank minus number with odd rank. The rank of a partition is its largest part minus the number of parts.

REFERENCES

G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 82, Examples 4 and 5.

Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355

Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 17, 31.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000

G. E. Andrews, An introduction to Ramanujan's "lost" notebook, Amer. Math. Monthly 86 (1979), no. 2, 89-108.  See page 95

L. A. Dragonette, Some asymptotic formulas for the Mock Theta Series of Ramanujan, Trans. Amer. Math. Soc., 72 (1952), 474-500.

John F. R. Duncan, Michael J. Griffin and Ken Ono, Proof of the Umbral Moonshine Conjecture, arXiv:1503.01472, 2015. [See f(q)]

N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 55, Eq. (26.11), (26.24).

K. Ono, The last words of a genius, Notices Amer. math. Soc., 57 (2010), 1410-1419.

George N. Watson, The final problem: an account of the mock theta functions, J. London Math. Soc., 11 (1936) 55-80

Eric Weisstein's World of Mathematics, Mock Theta Function

FORMULA

G.f.: 1 + Sum_{n>0} (q^(n^2) / Product_{i=1..n} (1 + q^i)^2).

G.f.: (1 + 4 * Sum_{n>0} (-1)^n * q^(n*(3*n+1)/2) / (1 + q^n)) / Product_{i>0} (1 - q^i).

EXAMPLE

G.f. = 1 + q - 2*q^2 + 3*q^3 - 3*q^4 + 3*q^5 - 5*q^6 + 7*q^7 - 6*q^8 + 6*q^9 + ...

MAPLE

series(1+4*add( (-1)^n*q^(n*(3*n+1)/2)/(1+q^n), n=1..71), q, 71)/series(mul(1-q^i, i=1..71), q, 71);

MATHEMATICA

CoefficientList[Series[(1+4Sum[(-1)^n q^(n(3n+1)/2)/(1+q^n), {n, 1, 10}])/Sum[(-1)^n q^(n(3n+1)/2), {n, -8, 8}], {q, 0, 100}], q] (* N. J. A. Sloane *)

sgn[P_ (* a partition *)] :=

Signature[

  PermutationList[

   Cycles[Flatten[

     SplitBy[Range[Total[P]], (Function[{x}, x > #1] &) /@

       Accumulate[P]], Length[P] - 1]]]]

conjugate[P_List(* a partition *)] :=

Module[{s = Select[P, #1 > 0 &], i, row, r}, row = Length[s];

  Table[r = row; While[s[[row]] <= i, row--]; r, {i, First[s]}]]

Total[Function[{x}, sgn[x] sgn[conjugate[x]]] /@

    IntegerPartitions[#]] & /@ Range[20]

(* George Beck, Oct 25 2014 *)

a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^k^2 / Product[ 1 + x^j, {j, k}]^2, {k, 0, Sqrt@n}], {x, 0, n}]]; (* Michael Somos, Jun 30 2015 *)

PROG

(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=1, sqrtint(n), x^k^2 / prod(i=1, k, 1 + x^i, 1 + x * O(x^(n - k^2)))^2, 1), n))}; /* Michael Somos, Sep 02 2007 */

CROSSREFS

Other '3rd order' mock theta functions are at A013953, A053250, A053251, A053252, A053253, A053254, A053255. See also A000039, A000199.

Sequence in context: A162157 A060210 A260460 * A036020 A036024 A036029

Adjacent sequences:  A000022 A000023 A000024 * A000026 A000027 A000028

KEYWORD

sign,easy,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

Entry improved by comments from Dean Hickerson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 28 10:24 EDT 2016. Contains 275132 sequences.