login
A000198
Largest order of automorphism group of a tournament with n nodes.
(Formerly M2280 N0902)
2
1, 1, 3, 3, 5, 9, 21, 21, 81, 81, 81, 243, 243, 441, 1215, 1701, 1701, 6561, 6561, 6561, 45927, 45927, 45927, 137781, 137781, 229635, 1594323, 1594323, 1594323, 4782969, 4782969, 7971615, 14348907, 33480783, 33480783, 129140163, 129140163, 129140163
OFFSET
1,3
REFERENCES
J. W. Moon, Topics on Tournaments. Holt, NY, 1968, p. 81.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
B. Alspach, A combinatorial proof of a conjecture of Goldberg and Moon, Canad. Math. Bull. 11 (1968), 655-661.
B. Alspach, On point-symmetric tournaments, Canad. Math. Bull., 13 (1970), 317-323. [Annotated copy] See g(n) as defined on page 317 (NOT on page 322).
B. Alspach and J. L. Berggren, On the determination of the maximum order of the group of a tournament, Canad. Math. Bull 16 (1973), 11-14.
J. D. Dixon, The maximum order of the group of a tournament, Canad. Math. Bull. 10 (1967), 503-505.
FORMULA
a(3^k) = 3^((3^k - 1)/2), a(5*3^k) = 5*3^((5*3^k - 5)/2), a(7*3^k) = 7*3^((7*3^k - 5)/2), and, for all other n, a(n) = max(a(i)a(n-i)) where the maximum is taken over 1 <= i <= n-1 (from Alspach and Berggren (1973) Theorem 4).
a(3r) = (3^r)a(r), a(n) = a(n-1) for n = 1, 2 or 4 mod 9, a(9k+8) = max(a(9k+7), a(5)a(9k+3)), a(9k+5) = max(a(2)a(9k+3), a(5)a(9k), a(7)a(9k-2)), a(9k+7) = a(7)a(9k) (from Alspach and Berggren (1973) Theorem 5).
MAPLE
a:= proc(n) local t, r; t:= irem(n, 9);
`if`(3^ilog[3](n)=n, 3^((3^ilog[3](n)-1)/2),
`if`(irem(n, 5, 'r')=0 and 3^ilog[3](r)=r, 5*3^((5*3^ilog[3](r)-5)/2),
`if`(irem(n, 7, 'r')=0 and 3^ilog[3](r)=r, 7*3^((7*3^ilog[3](r)-5)/2),
`if`(irem(n, 3, 'r')=0, 3^r*a(r),
`if`(t in {1, 2, 4}, a(n-1),
`if`(t = 8, max(a(n-1), a(5)*a(n-5)),
`if`(t = 5, max(a(2)*a(n-2), a(5)*a(n-5), a(7)*a(n-7)),
a(7)*a(n-7) )))))))
end:
seq(a(n), n=1..50); # Alois P. Heinz, Jun 29 2012
MATHEMATICA
a[n_] := a[n] = With[{t = Mod[n, 9]}, Which[ IntegerQ[Log[3, n]], 3^((1/2)*(n-1)), {q, r} = QuotientRemainder[n, 5]; r == 0 && IntegerQ[Log[3, q]], 5*3^((1/2)*(n-5)), {q, r} = QuotientRemainder[n, 7]; r == 0 && IntegerQ[Log[3, q]], 7*3^((1/2)*(n-5)), {q, r} = QuotientRemainder[n, 3]; r == 0, 3^q*a[q], MemberQ[{1, 2, 4}, t], a[n-1], t == 8, Max[a[n-1], a[5]*a[n-5]], t == 5, Max[a[2]*a[n-2], a[5]*a[n-5], a[7]*a[n-7]], True, a[7]*a[n-7]]]; Table[a[n], {n, 1, 38}] (* Jean-François Alcover, Nov 12 2012, after Alois P. Heinz *)
PROG
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def A000198(n):
if n <= 7: return (1, 1, 3, 3, 5, 9, 21)[n-1]
if (r:=n%9) in {0, 3, 6}:
return 3**(m:=n//3)*A000198(m)
elif r in {1, 2, 4}:
return A000198(n-1)
elif r == 5:
return max(A000198(n-2), 5*A000198(n-5), 21*A000198(n-7))
elif r == 7:
return 21*A000198(n-7)
elif r == 8:
return max(A000198(n-1), 5*A000198(n-5)) # Chai Wah Wu, Jul 01 2024
CROSSREFS
Sequence in context: A209083 A137202 A146926 * A202674 A027170 A132775
KEYWORD
nonn,nice
EXTENSIONS
Edited and extended by Joseph Myers, Jun 28 2012
STATUS
approved