login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000198 Largest order of automorphism group of a tournament with n nodes.
(Formerly M2280 N0902)
1
1, 1, 3, 3, 5, 9, 21, 21, 81, 81, 81, 243, 243, 441, 1215, 1701, 1701, 6561, 6561, 6561, 45927, 45927, 45927, 137781, 137781, 229635, 1594323, 1594323, 1594323, 4782969, 4782969, 7971615, 14348907, 33480783, 33480783, 129140163, 129140163, 129140163 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

It appears that all terms except a(5) = 5 are divisible by a power of 3. - Jonathan Vos Post, Apr 20 2011

REFERENCES

J. W. Moon, Topics on Tournaments. Holt, NY, 1968, p. 81.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Joseph Myers, Table of n, a(n) for n = 1..1000

B. Alspach, A combinatorial proof of a conjecture of Goldberg and Moon, Canad. Math. Bull. 11 (1968), 655-661.

B. Alspach and J. L. Berggren, On the determination of the maximum order of the group of a tournament, Canad. Math. Bull 16 (1973), 11-14.

J. D. Dixon, The maximum order of the group of a tournament, Canad. Math. Bull. 10 (1967), 503-505.

Index entries for sequences related to tournaments

FORMULA

a(3^k) = 3^((3^k - 1)/2), a(5*3^k) = 5*3^((5*3^k - 5)/2), a(7*3^k) = 7*3^((7*3^k - 5)/2), and, for all other n, a(n) = max (a(i)a(n-i)) where the max is taken over 1 <= i <= n-1 (from Alspach and Berggren (1973) Theorem 4).

a(3r) = (3^r)a(r), a(n) = a(n-1) for n = 1, 2 or 4 mod 9, a(9k+8) = max(a(9k+7), a(5)a(9k+3)), a(9k+5) = max(a(2)a(9k+3), a(5)a(9k), a(7)a(9k-2)), a(9k+7) = a(7)a(9k) (from Alspach and Berggren (1973) Theorem 5).

MAPLE

a:= proc(n) local t, r; t:= irem(n, 9);

   `if`(3^ilog[3](n)=n, 3^((3^ilog[3](n)-1)/2),

   `if`(irem(n, 5, 'r')=0 and 3^ilog[3](r)=r, 5*3^((5*3^ilog[3](r)-5)/2),

   `if`(irem(n, 7, 'r')=0 and 3^ilog[3](r)=r, 7*3^((7*3^ilog[3](r)-5)/2),

   `if`(irem(n, 3, 'r')=0, 3^r*a(r),

   `if`(t in {1, 2, 4}, a(n-1),

   `if`(t = 8, max(a(n-1), a(5)*a(n-5)),

   `if`(t = 5, max(a(2)*a(n-2), a(5)*a(n-5), a(7)*a(n-7)),

        a(7)*a(n-7) )))))))

    end:

seq(a(n), n=1..50);  # Alois P. Heinz, Jun 29 2012

MATHEMATICA

a[n_] := a[n] = With[{t = Mod[n, 9]}, Which[ IntegerQ[Log[3, n]], 3^((1/2)*(n-1)), {q, r} = QuotientRemainder[n, 5]; r == 0 && IntegerQ[Log[3, q]], 5*3^((1/2)*(n-5)), {q, r} = QuotientRemainder[n, 7]; r == 0 && IntegerQ[Log[3, q]], 7*3^((1/2)*(n-5)), {q, r} = QuotientRemainder[n, 3]; r == 0, 3^q*a[q], MemberQ[{1, 2, 4}, t], a[n-1], t == 8, Max[a[n-1], a[5]*a[n-5]], t == 5, Max[a[2]*a[n-2], a[5]*a[n-5], a[7]*a[n-7]], True, a[7]*a[n-7]]]; Table[a[n], {n, 1, 38}] (* Jean-Fran├žois Alcover, Nov 12 2012, after Alois P. Heinz *)

CROSSREFS

Sequence in context: A209083 A137202 A146926 * A202674 A027170 A132775

Adjacent sequences:  A000195 A000196 A000197 * A000199 A000200 A000201

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

Edited and extended by Joseph Myers, Jun 28 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 23 02:49 EDT 2017. Contains 283901 sequences.