login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000195 Floor(log(n)). 16
0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,8

COMMENTS

Equals A004233(n) - 1 for n > 1.

Does not satisfy Benford's law [Whyman et al., 2016] - N. J. A. Sloane, Feb 12 2017

REFERENCES

Whyman, G., Ohtori, N., Shulzinger, E., & Bormashenko, E. (2016). Revisiting the Benford law: When the Benford-like distribution of leading digits in sets of numerical data is expectable?. Physica A: Statistical Mechanics and its Applications, 461, 595-601.

LINKS

T. D. Noe, Table of n, a(n) for n=1..10000

Index entries for sequences related to Benford's law

MAPLE

Digits := 100; f := n->floor(evalf(log(n))); [ seq(f(n), n=1..100) ];

PROG

(PARI) a(n)=floor(log(n))

(Haskell)

a000195 = floor . log . fromIntegral  -- Reinhard Zumkeller, Mar 17 2015

CROSSREFS

Cf. A000193 (nearest integer to log(n)), A004233.

Cf. A000523.

Sequence in context: A137325 A180258 A211663 * A135663 A090620 A151659

Adjacent sequences:  A000192 A000193 A000194 * A000196 A000197 A000198

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 24 07:54 EDT 2017. Contains 283985 sequences.