The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000194 n appears 2n times, for n >= 1; also nearest integer to square root of n. 60
 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Define the oblong root obrt(x) to be the (larger) solution of y * (y+1) = x; i.e., obrt(x) = sqrt(x+1/4) - 1/2. So obrt(x) is an integer iff x is an oblong number (A002378). Then a(n) = ceiling(obrt(n)). - Franklin T. Adams-Watters, Jun 24 2015 From Wolfdieter Lang, Mar 12 2019: (Start) The general Pell equation is related to the non-reduced form F(n) = Xvec^T A(n) Xvec = x^2 - D(n)*y^2 with D(n) = A000037(n) (D not a square), Xvec = (x,y)^T (T for transposed) and A(n) = matrix[[1,0], [0,-D(n)]]. The discriminant of F(n) = [1, 0, -D(n)] is 4*D(n). The first reduced form appears after two applications of an equivalence transformation A' = R^T A R obtained with R = R(t) = matrix([0, -1], [1, t]), namely first with t = 0, leading to the still not reduced form [-D, 0, 1], and then with t = ceiling(f(4*D(n))/2 - 1), where f(4*D(n)) = ceiling(2*sqrt(D(n))). This can be shown to be a(n), which is also D(n) - n, for n >= 1 (see a formula below). This leads to the reduced form FR(n) = [1, 2*a(n), -(D(n) - a(n)^2)] = [1, 2*a(n), -(n - a(n)*(a(n) - 1)]. Example: n = 5, a(5) = 2: D(5) = 7 and FR(5) = [1, 4, -3].  (End) REFERENCES B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 78, Entry 24. LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 Jonathan M. Borwein and others, Nearest Integer Zeta Functions, solution to Problem 10212, The American Mathematical Monthly, Vol. 101, No. 6 (1994), pp. 579-580. G. Gutin, Problem 913 (BCC20.5), Mediated digraphs, in Research Problems from the 20th British Combinatorial Conference, Discrete Math., 308 (2008), 621-630. M. A. Nyblom, Some curious sequences involving floor and ceiling functions, Am. Math. Monthly 109 (#6, 2002), 559-564. Michael Somos, Sequences used for indexing triangular or square arrays. Eric Weisstein's World of Mathematics, Ramanujan Theta Functions. FORMULA a(n) = A000037(n) - n. G.f.: x * f(x^2, x^6)/(1-x) where f(,) is Ramanujan's two-variable theta function. - Michael Somos, May 31 2000 a(n) = a(n - 2*a(n - a(n-1))) + 1. - Benoit Cloitre, Oct 27 2002 a(n+1) = a(n) + A005369(n). a(n) = floor((1/2)*(1 + sqrt(4*n - 3))). - Zak Seidov, Jan 18 2006 a(n) = A000037(n) - n. - Jaroslav Krizek, Jun 14 2009 a(n) = floor(A027434(n)/2). - Gregory R. Bryant, Apr 17 2013 From Mikael Aaltonen, Jan 17 2015: (Start) a(n) = floor(sqrt(n) + 1/2). a(n) = sqrt(A053187(n)). (End) a(0) = 0, and a(n) = k for k from the closed interval [k^2 - k + 1, k*(k+1)] = [A002061(k), A002378(k)], for k >= 1. See A053187. - Wolfdieter Lang, Mar 12 2019 a(n) = floor(2*sqrt(n)) - floor(sqrt(n)). - Ridouane Oudra, Jun 08 2020 Sum_{n>=1} 1/a(n)^s = 2*zeta(s-1), for s > 2 (Borwein, 1994). - Amiram Eldar, Oct 31 2020 EXAMPLE G.f. = x + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 3*x^7 + 3*x^8 + 3*x^9 + 3*x^10 + ... MAPLE Digits := 100; f := n->round(evalf(sqrt(n))); [ seq(f(n), n=0..100) ]; # More efficient: a := n -> isqrt(n): seq(a(n), n=0..98); # Peter Luschny, Mar 13 2019 MATHEMATICA A000194[n_] := Floor[(1 + Sqrt[4 n - 3])/2]; (* Enrique Pérez Herrero, Apr 14 2010 *) Flatten[Table[PadRight[{}, 2n, n], {n, 10}]] (* Harvey P. Dale, Nov 16 2011 *) PROG (PARI) {a(n) = ceil( sqrtint(4*n) / 2)}; /* Michael Somos, Feb 11 2004 */ (PARI) a(n)=(sqrtint(4*n) + 1)\2 \\ Charles R Greathouse IV, Jun 08 2020 (Haskell) a000194 n = a000194_list !! (n-1) a000194_list = concat \$ zipWith (\$) (map replicate [2, 4..]) [1..] -- Reinhard Zumkeller, Mar 18 2011 (Python) from math import isqrt def A000194(n): return (m:=isqrt(n))+int(n-m*(m+1)>=1) # Chai Wah Wu, Jul 30 2022 CROSSREFS Cf. A000037, A002024, A002061, A002378, A053187, A105209, A259351. Partial sums of A005369. Sequence in context: A260999 A090532 A003058 * A168255 A097429 A100617 Adjacent sequences:  A000191 A000192 A000193 * A000195 A000196 A000197 KEYWORD nonn,easy,nice AUTHOR EXTENSIONS Additional comments from Michael Somos, May 31 2000 Edited by M. F. Hasler, Mar 01 2014 Initial 0 added by N. J. A. Sloane, Nov 13 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 6 12:35 EDT 2022. Contains 357264 sequences. (Running on oeis4.)