login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000202 a(8i+j) = 13i + a(j), where 1<=j<=8.
(Formerly M2323 N0918)
1
1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, 30, 32, 34, 35, 37, 38, 40, 42, 43, 45, 47, 48, 50, 51, 53, 55, 56, 58, 60, 61, 63, 64, 66, 68, 69, 71, 73, 74, 76, 77, 79, 81, 82, 84, 86, 87, 89, 90, 92, 94, 95, 97, 99, 100, 102, 103, 105, 107, 108, 110 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Michael De Vlieger, Table of n, a(n) for n = 1..10000

D. E. Thoro, Problem H-12 A Curious Sequence, Fib. Quart., 1 (No. 4, 1963), 50.

MAPLE

a[0] := 0:a[1] := 1:a[2] := 3:a[3] := 4:a[4] := 6:a[5] := 8:a[6] := 9:a[7] := 11:a[8] := 12: for m from 9 to 200 do if irem(m, 8)=0 then myrem := 8; myquo := iquo(m, 8)-1; else myrem := irem(m, 8); myquo := iquo(m, 8) fi; a[m] := 13*myquo +a[myrem] od: for k from 1 to 200 do printf(`%a, `, a[k]) od: # James A. Sellers, May 29 2000

MATHEMATICA

Set[#, {1, 3, 4, 6, 8, 9, 11, 12}] &@ Map[a[#] &, Range[0, 7]]; a[n_] := a[n] = 13 #1 + a[#2] & @@ QuotientRemainder[n, 8]; Array[a, 68, 0] (* Michael De Vlieger, Sep 08 2017 *)

CROSSREFS

Different from A000201, A066096, A090908.

Sequence in context: A000201 A090908 A292644 * A188035 A026339 A182774

Adjacent sequences:  A000199 A000200 A000201 * A000203 A000204 A000205

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from James A. Sellers, May 29 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified October 23 03:44 EDT 2017. Contains 293783 sequences.