OFFSET
0,2
COMMENTS
This is the Abramowitz-Stegun ordering of integer partitions when they are read in the usual (weakly decreasing) order. The case of reversed (weakly increasing) partitions is A036036.
LINKS
EXAMPLE
The sequence of all partitions in Abramowitz-Stegun order begins:
() (41) (21111) (31111) (3221)
(1) (221) (111111) (211111) (3311)
(2) (311) (7) (1111111) (4211)
(11) (2111) (43) (8) (5111)
(3) (11111) (52) (44) (22211)
(21) (6) (61) (53) (32111)
(111) (33) (322) (62) (41111)
(4) (42) (331) (71) (221111)
(22) (51) (421) (332) (311111)
(31) (222) (511) (422) (2111111)
(211) (321) (2221) (431) (11111111)
(1111) (411) (3211) (521) (9)
(5) (2211) (4111) (611) (54)
(32) (3111) (22111) (2222) (63)
This sequence can also be interpreted as the following triangle, whose n-th row is itself a finite triangle with A000041(n) rows.
0
(1)
(2) (1,1)
(3) (2,1) (1,1,1)
(4) (2,2) (3,1) (2,1,1) (1,1,1,1)
(5) (3,2) (4,1) (2,2,1) (3,1,1) (2,1,1,1) (1,1,1,1,1)
Showing partitions as their Heinz numbers (see A334433) gives:
1
2
3 4
5 6 8
7 9 10 12 16
11 15 14 18 20 24 32
13 25 21 22 27 30 28 36 40 48 64
17 35 33 26 45 50 42 44 54 60 56 72 80 96 128
MATHEMATICA
Join@@Table[Sort[IntegerPartitions[n]], {n, 0, 8}]
CROSSREFS
Lexicographically ordered reversed partitions are A026791.
The version for reversed partitions (sum/length/lex) is A036036.
Row lengths are A036043.
Reverse-lexicographically ordered partitions are A080577.
The version for compositions is A124734.
Lexicographically ordered partitions are A193073.
Sorting first by sum, then by Heinz number gives A215366.
Reversed partitions under the dual ordering (sum/length/revlex) are A334302.
Taking Heinz numbers gives A334433.
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Apr 29 2020
STATUS
approved