This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A239512 Irregular triangular array read by rows:  row n gives a list of the partitions of the Lucas numbers. 3
 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 4, 2, 4, 1, 1, 3, 3, 3, 2, 1, 3, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 4, 3, 4, 2, 1, 4, 1, 1, 1, 3, 3, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The number of partitions represented in row n is A067592(n). The parts of each partition are arranged in nonincreasing order, and the partitions are arranged in Mathematica order (reverse-lexicographic). The parts are the terms of the Lucas sequence, A000032(n), n >= 1. LINKS Clark Kimberling, Table of n, a(n) for n = 1..1000 EXAMPLE The first 7 rows: 1 1 1 3 1 1 1 4 3 1 1 1 1 1 4 1 3 1 1 1 1 1 1 1 4 1 1 3 3 3 1 1 1 1 1 1 1 1 1 7 4 3 4 1 1 1 3 3 1 3 1 1 1 1 1 1 1 1 1 1 1 The first 7 rows represent these partitions: 1 11 3, 111 4, 31, 1111 41, 311, 11111 411, 33, 3111, 111111 7, 43, 431, 41111, 3311, 311111, 1111111 MATHEMATICA LucasQ[n_] := IntegerQ[Sqrt[5 n^2 + 20]] || IntegerQ[Sqrt[5 n^2 - 20]]; Attributes[LucasQ] = {Listable}; TableForm[t = Map[Select[IntegerPartitions[#], And @@ LucasQ[#] &] &, Range[0, 12]]]  (* A239512, partitions *) Flatten[t] (* A067592 *) (* Peter J. C. Moses, Mar 24 2014 *) CROSSREFS Cf. A239001, A000032, A067592. Sequence in context: A026792 A139100 A237982 * A036037 A181317 A080577 Adjacent sequences:  A239509 A239510 A239511 * A239513 A239514 A239515 KEYWORD nonn,tabf,easy AUTHOR Clark Kimberling, Mar 25 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 04:26 EDT 2019. Contains 324183 sequences. (Running on oeis4.)