login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A237982 Triangular array read by rows: row n gives the NE partitions of n (see Comments). 5
1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 4, 1, 1, 3, 2, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 1, 5, 2, 5, 1, 1, 4, 3, 4, 2, 1, 4, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See Comments at A237981 for definitions of the directional partitions, NW, NE, SW, SE. The number of NE partitions of n, and also the number of SW partitions of n, is A237329(n), for n >=1.

The order is: each partition has nonincreasing parts and the partitions are ordered anti-lexicographic (called "Mathematica order" in the example). - Wolfdieter Lang, Mar 21 2014

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..1000

Clark Kimberling and Peter J. C. Moses, Ferrers Matrices and Related Partitions of Integers

EXAMPLE

The first 4 rows of the array of NW partitions:

1

2 .. 1 .. 1

3 .. 2 .. 1 .. 1 .. 1 .. 1

4 .. 3 .. 1 .. 2 .. 1 .. 1 .. 1 .. 1 .. 1 .. 1

Row 4, for example, represents the 4 NE partitions of 4 as follows:  [4], [3,1], [2,1,1], [1,1,1,1], listed in "Mathematica order".

MATHEMATICA

z = 10; ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; cornerPart[list_] := Module[{f = ferrersMatrix[list], u, l, ur, lr, nw, ne, se, sw}, {u, l} = {UpperTriangularize[#, 1], LowerTriangularize[#]} &[f]; {ur, lr} = {UpperTriangularize[#, 1], LowerTriangularize[#]} &[Reverse[f]]; {nw, ne, se, sw} = {Total[Transpose[u]] + Total[l], Total[ur] + Total[Transpose[lr]], Total[u] + Total[Transpose[l]], Total[Transpose[ur]] + Total[lr]};    Map[DeleteCases[Reverse[Sort[#]], 0] &, {nw, ne, se, sw}]]; cornerParts[n_] :=  Map[#[[Reverse[Ordering[PadRight[#]]]]] &, Map[DeleteDuplicates[#] &,    Transpose[Map[cornerPart, IntegerPartitions[n]]]]]; cP = Map[cornerParts, Range[z]];

Flatten[Map[cP[[#, 1]] &, Range[Length[cP]]]](*NW corner: A237981*)

Flatten[Map[cP[[#, 2]] &, Range[Length[cP]]]](*NE corner: A237982*)

Flatten[Map[cP[[#, 3]] &, Range[Length[cP]]]](*SE corner: A237983*)

Flatten[Map[cP[[#, 4]] &, Range[Length[cP]]]](*SW corner: A237982*)

(* Peter J. C. Moses, Feb 25 2014 *)

CROSSREFS

Cf. A237981, A237329, A237983, A237985, A238325, A238326.

Sequence in context: A277648 A026792 A139100 * A239512 A036037 A181317

Adjacent sequences:  A237979 A237980 A237981 * A237983 A237984 A237985

KEYWORD

nonn,tabf,easy

AUTHOR

Clark Kimberling and Peter J. C. Moses, Feb 23 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 17:43 EDT 2019. Contains 324142 sequences. (Running on oeis4.)