OFFSET
0,2
LINKS
OEIS Wiki, Orderings of partitions
Wikiversity, Lexicographic and colexicographic order
EXAMPLE
The sequence of all reversed partitions begins:
() (1,4) (1,1,1,1,2)
(1) (1,2,2) (1,1,1,1,1,1)
(2) (1,1,3) (7)
(1,1) (1,1,1,2) (3,4)
(3) (1,1,1,1,1) (2,5)
(1,2) (6) (1,6)
(1,1,1) (3,3) (2,2,3)
(4) (2,4) (1,3,3)
(2,2) (1,5) (1,2,4)
(1,3) (2,2,2) (1,1,5)
(1,1,2) (1,2,3) (1,2,2,2)
(1,1,1,1) (1,1,4) (1,1,2,3)
(5) (1,1,2,2) (1,1,1,4)
(2,3) (1,1,1,3) (1,1,1,2,2)
This sequence can also be interpreted as the following triangle, whose n-th row is itself a finite triangle with A000041(n) rows.
0
(1)
(2) (1,1)
(3) (1,2) (1,1,1)
(4) (2,2) (1,3) (1,1,2) (1,1,1,1)
(5) (2,3) (1,4) (1,2,2) (1,1,3) (1,1,1,2) (1,1,1,1,1)
Showing partitions as their Heinz numbers (see A334435) gives:
1
2
3 4
5 6 8
7 9 10 12 16
11 15 14 18 20 24 32
13 25 21 22 27 30 28 36 40 48 64
17 35 33 26 45 50 42 44 54 60 56 72 80 96 128
MATHEMATICA
revlensort[f_, c_]:=If[Length[f]!=Length[c], Length[f]<Length[c], OrderedQ[{c, f}]];
Join@@Table[Sort[Sort/@IntegerPartitions[n], revlensort], {n, 0, 8}]
CROSSREFS
Row lengths are A036043.
Lexicographically ordered reversed partitions are A026791.
The dual ordering (sum/length/lex) of reversed partitions is A036036.
Reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Lexicographically ordered partitions are A193073.
Graded Heinz numbers are A215366.
Ignoring length gives A228531.
Sorting partitions by Heinz number gives A296150.
The version for compositions is A296774.
The dual ordering (sum/length/lex) of non-reversed partitions is A334301.
Taking Heinz numbers gives A334435.
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Apr 30 2020
STATUS
approved