OFFSET
1,2
COMMENTS
The number of partitions represented in row n is A003107(n).
The parts of a partition are nonincreasing and the order of the partitions is anti-lexicographic. As parts one uses A000045(n), n >= 2. - Wolfdieter Lang, Mar 17 2014
EXAMPLE
1
2 1 1
3 2 1 1 1 1
3 1 2 2 2 1 1 1 1 1 1
5 3 2 3 1 1 2 2 1 2 1 1 1 1 1 1 1 1
Row 5 represents these six partitions: 5, 32, 311, 221, 2111, 11111.
From Wolfdieter Lang, Mar 17 2014: (Start)
The array with separated partitions begins:
n\k 1 2 3 4 5 6 7 8 9 10 ...
1: 1
2: 2 1,1
3: 3 2,1 1,1,1
4: 3,1 2,2 2,1,1 1,1,1,1
5: 5 3,2 3,1,1 2,2,1 2,1,1,1 1,1,1,1,1
6: 5,1 3,3 3,2,1 3,1,1,1 2,2,2 2,2,1,1 2,1,1,1,1 1,1,1,1,1,1
7: 5,2 5,1,1 3,3,1 3,2,2 3,2,1,1 3,1,1,1,1 2,2,2,1 2,2,1,1,1 2,1,1,1,1,1 1,1,1,1,1,1,1
...
Row n=8: 8 5,3 5,2,1 5,1,1,1 3,3,2 3,3,1,1 3,2,2,1 3,2,1,1,1 3,1,1,1,1,1 2,2,2,2 2,2,2,1,1
2,2,1,1,1,1 2,1,1,1,1,1,1 1,1,1,1,1,1,1,1;
Row n=9 8,1 5,3,1 5,2,2 5,2,1,1 5,1,1,1,1 3,3,3 3,3,2,1 3,3,1,1,1 3,2,2,2 3,2,2,1,1
3,2,1,1,1,1 3,1,1,1,1,1,1 2,2,2,2,1 2,2,2,1,1,1 2,2,1,1,1,1,1 2,1,1,1,1,1,1,1 1,1,1,1,1,1,1,1,1;
Row n=10: 8,2 8,1,1 5,5 5,3,2 5,3,1,1 5,2,2,1 5,2,1,1,1 5,1,1,1,1,1 3,3,3,1 3,3,2,2 3,3,2,1,1
3,3,1,1,1,1 3,2,2,2,1 3,2,2,1,1,1 3,2,1,1,1,1,1 3,1,1,1,1,1,1,1 2,2,2,2,2 2,2,2,2,1,1
2,2,2,1,1,1,1 2,2,1,1,1,1,1,1 2,1,1,1,1,1,1,1,1 1,1,1,1,1,1,1,1,1,1.
-----------------------------------------------------------------------------------------------------------
(End)
MATHEMATICA
f = Table[Fibonacci[n], {n, 2, 60}]; p[n_, k_] := p[n, k] = IntegerPartitions[n][[k]]; s[n_, k_] := If[Union[f, DeleteDuplicates[p[n, k]]] == f, p[n, k], 0]; t[n_] := Table[s[n, k], {k, 1, PartitionsP[n]}]; TableForm[Table[DeleteCases[t[n], 0], {n, 1, 12}]] (* shows partitions *)
y = Flatten[Table[DeleteCases[t[n], 0], {n, 1, 12}]] (* A239001 *)
(* also *)
FibonacciQ[n_] := IntegerQ[Sqrt[5 n^2 + 4]] || IntegerQ[Sqrt[5 n^2 - 4]]; Attributes[FibonacciQ] = {Listable}; TableForm[t = Map[Select[IntegerPartitions[#], And @@ FibonacciQ[#] &] &, Range[0, 12]]]
Flatten[t] (* Peter J. C. Moses, Mar 24 2014 *)
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
Clark Kimberling, Mar 08 2014
STATUS
approved