The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A026791 Triangle in which n-th row lists juxtaposed lexicographically ordered partitions of n; e.g., the partitions of 3 (1+1+1,1+2,3) appear as 1,1,1,1,2,3 in row 3. 53
 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 3, 2, 2, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 2, 1, 4, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 4, 1, 2, 3, 1, 5, 2, 2, 2, 2, 4, 3, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 2, 3, 1, 1, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Differs from A080576 in a(18): Here, (...,1+3,2+2,4), there (...,2+2,1+3,4). The representation of the partitions (for fixed n) is as (weakly) increasing lists of parts, the order between individual partitions (for the same n) is lexicographic (see example). - Joerg Arndt, Sep 03 2013 The equivalent sequence for compositions (ordered partitions) is A228369. - Omar E. Pol, Oct 19 2019 LINKS Alois P. Heinz, Rows n = 1..19, flattened Wikiversity, Lexicographic and colexicographic order EXAMPLE First six rows are: [[1]]; [[1, 1], [2]]; [[1, 1, 1], [1, 2], [3]]; [[1, 1, 1, 1], [1, 1, 2], [1, 3], [2, 2], [4]]; [[1, 1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 3], [1, 2, 2], [1, 4], [2, 3], [5]]; [[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2], [1, 1, 1, 3], [1, 1, 2, 2], [1, 1, 4], [1, 2, 3], [1, 5], [2, 2, 2], [2, 4], [3, 3], [6]]; ... From Omar E. Pol, Sep 03 2013: (Start) Illustration of initial terms: ---------------------------------- . Ordered n j Diagram partition j ---------------------------------- . _ 1 1 |_| 1; . _ _ 2 1 | |_| 1, 1, 2 2 |_ _| 2; . _ _ _ 3 1 | | |_| 1, 1, 1, 3 2 | |_ _| 1, 2, 3 3 |_ _ _| 3; . _ _ _ _ 4 1 | | | |_| 1, 1, 1, 1, 4 2 | | |_ _| 1, 1, 2, 4 3 | |_ _ _| 1, 3, 4 4 | |_ _| 2, 2, 4 5 |_ _ _ _| 4; ... (End) MAPLE T:= proc(n) local b, ll; b:= proc(n, l) if n=0 then ll:= ll, l[] else seq(b(n-i, [l[], i]), i=`if`(l=[], 1, l[-1])..n) fi end; ll:= NULL; b(n, []); ll end: seq(T(n), n=1..8); # Alois P. Heinz, Jul 16 2011 MATHEMATICA T[n0_] := Module[{b, ll}, b[n_, l_] := If[n == 0, ll = Join[ll, l], Table[ b[n - i, Append[l, i]], {i, If[l == {}, 1, l[[-1]]], n}]]; ll = {}; b[n0, {}]; ll]; Table[T[n], {n, 1, 8}] // Flatten (* Jean-François Alcover, Aug 05 2015, after Alois P. Heinz *) Table[DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions[n]], x_ /; x == 0, 2], {n, 7}] // Flatten (* Robert Price, May 18 2020 *) PROG (Python) t = [[[]]] for n in range(1, 10): p = [] for minp in range(1, n): p += [[minp] + pp for pp in t[n-minp] if min(pp) >= minp] t.append(p + [[n]]) print(t) # Andrey Zabolotskiy, Oct 18 2019 CROSSREFS Row lengths are given in A006128. Partition lengths are in A193173. Other partition orderings: A026792, A036037, A080577, A125106, A139100, A181087, A181317, A182937, A228100, A240837, A242628. Row lengths are A000041. Partition sums are A036042. Partition minima are A196931. Partition maxima are A194546. The reflected version is A211992. The length-sensitive version (sum/length/lex) is A036036. The colexicographic version (sum/colex) is A080576. The version for non-reversed partitions is A193073. Compositions under the same ordering (sum/lex) are A228369. The reverse-lexicographic version (sum/revlex) is A228531. The Heinz numbers of these partitions are A334437. Cf. A049085, A103921, A112798, A115623, A129129, A331581, A334435, A334439, A334442. Sequence in context: A143227 A329746 A302247 * A080576 A321744 A322763 Adjacent sequences: A026788 A026789 A026790 * A026792 A026793 A026794 KEYWORD nonn,tabf AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 21:25 EST 2022. Contains 358669 sequences. (Running on oeis4.)