login
A334433
Heinz numbers of all integer partitions sorted first by sum, then by length, and finally lexicographically.
35
1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 12, 16, 11, 15, 14, 18, 20, 24, 32, 13, 25, 21, 22, 27, 30, 28, 36, 40, 48, 64, 17, 35, 33, 26, 45, 50, 42, 44, 54, 60, 56, 72, 80, 96, 128, 19, 49, 55, 39, 34, 75, 63, 70, 66, 52, 81, 90, 100, 84, 88, 108, 120, 112, 144, 160, 192, 256
OFFSET
0,2
COMMENTS
First differs from A334435 at a(75) = 99, A334435(75) = 98.
A permutation of the positive integers.
This is the Abramowitz-Stegun ordering of integer partitions when the parts are read in the usual (weakly decreasing) order. The case of reversed (weakly increasing) partitions is A185974.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
As a triangle with row lengths A000041, the sequence starts {{1},{2},{3,4},{5,6,8},...}, so offset is 0.
FORMULA
A001222(a(n)) = A036043(n).
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {} 32: {1,1,1,1,1} 42: {1,2,4}
2: {1} 13: {6} 44: {1,1,5}
3: {2} 25: {3,3} 54: {1,2,2,2}
4: {1,1} 21: {2,4} 60: {1,1,2,3}
5: {3} 22: {1,5} 56: {1,1,1,4}
6: {1,2} 27: {2,2,2} 72: {1,1,1,2,2}
8: {1,1,1} 30: {1,2,3} 80: {1,1,1,1,3}
7: {4} 28: {1,1,4} 96: {1,1,1,1,1,2}
9: {2,2} 36: {1,1,2,2} 128: {1,1,1,1,1,1,1}
10: {1,3} 40: {1,1,1,3} 19: {8}
12: {1,1,2} 48: {1,1,1,1,2} 49: {4,4}
16: {1,1,1,1} 64: {1,1,1,1,1,1} 55: {3,5}
11: {5} 17: {7} 39: {2,6}
15: {2,3} 35: {3,4} 34: {1,7}
14: {1,4} 33: {2,5} 75: {2,3,3}
18: {1,2,2} 26: {1,6} 63: {2,2,4}
20: {1,1,3} 45: {2,2,3} 70: {1,3,4}
24: {1,1,1,2} 50: {1,3,3} 66: {1,2,5}
Triangle begins:
1
2
3 4
5 6 8
7 9 10 12 16
11 15 14 18 20 24 32
13 25 21 22 27 30 28 36 40 48 64
17 35 33 26 45 50 42 44 54 60 56 72 80 96 128
This corresponds to the tetrangle:
0
(1)
(2)(11)
(3)(21)(111)
(4)(22)(31)(211)(1111)
(5)(32)(41)(221)(311)(2111)(11111)
MATHEMATICA
Join@@Table[Times@@Prime/@#&/@Sort[IntegerPartitions[n]], {n, 0, 8}]
CROSSREFS
Row lengths are A000041.
Compositions under the same order are A124734 (triangle).
The version for reversed (weakly increasing) partitions is A185974.
The constructive version is A334301.
Ignoring length gives A334434, or A334437 for reversed partitions.
The dual version (sum/length/revlex) is A334438.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in increasing-length colexicographic order (sum/length/colex) are A036037.
Graded reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Graded lexicographically ordered partitions are A193073.
Graded Heinz numbers are A215366.
Sorting partitions by Heinz number gives A296150.
Partitions in increasing-length reverse-lexicographic order (sum/length/revlex) are A334439 (not A036037).
Sequence in context: A243571 A215366 A333483 * A334435 A334436 A266195
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Apr 30 2020
STATUS
approved