OFFSET
0,6
COMMENTS
Conjecture: a(n) > 0 for all n > 1, and a(n) = 1 only for n = 2, 3, 4, 6, 9, 13, 16, 20, 21, 24, 25, 44, 50, 51, 65, 84, 189, 290, 484, 616, 664, 680, 917, 1501, 1639, 3013.
Based on our computation, we also formulate the following general conjecture.
General Conjecture: Let T(w) = w*(w+1)/2. We have {P(x,y,z,w): x,y,z,w = 0,1,2,...} = {0,1,2,...} for any of the following polynomials P(x,y,z,w): x^3+y^3+c*z^3+T(w) (c = 2,3,4,6), x^3+y^3+c*z^3+2*T(w) (c = 2,3), x^3+b*y^3+3z^3+3*T(w) (b = 1,2), x^3+2y^3+3z^3+w(5w-1)/2, x^3+2y^3+3z^3+w(5w-3)/2, x^3+2y^3+c*z^3+T(w) (c = 2,3,4,5,6,7,12,20,21,34,35,40), x^3+2y^3+c*z^3+2*T(w) (c = 3,4,5,6,11), x^3+2y^3+c*z^3+w^2 (c = 3,4,5,6), x^3+2y^3+4z^3+w(3w-1)/2, x^3+2y^3+4z^3+w(3w+1)/2, x^3+2y^3+4z^3+w(2w-1), x^3+2y^3+6z^3+w(3w-1)/2, x^3+3y^3+c*z^3+T(w) (c = 3,4,5,6,10,11,13,15,16,18,20), x^3+3y^3+c*z^3+2*T(w) (c = 5,6,11), x^3+4y^3+c*z^3+T(w) (c = 5,10,12,16), x^3+4y^3+5z^3+2*T(w), x^3+5y^3+10z^3+T(w), 2x^3+3y^3+c*z^3+T(w) (c = 4,6), 2x^3+4y^3+8z^3+T(w), x^4+y^3+3z^3+w(3w-1)/2, x^4+y^3+c*z^3+T(w) (c = 2,3,4,5,7,12,13), x^4+y^3+c*z^3+2*T(w) (c = 2,3,4,5), x^4+y^3+2z^3+w^2, x^4+y^3+4z^3+2w^2, x^4+2y^3+c*z^3+T(w) (c = 4,5,12), x^4+2y^3+3z^3+2*T(w), 2x^4+y^3+2z^3+w(3w-1)/2, 2x^4+y^3+c*z^3+T(w) (c = 1,2,3,4,5,6,10,11), 2x^4+y^3+c*z^3+2*T(w) (c = 2,3,4), 2x^4+2y^3+c*z^3+T(w) (c = 3,5), 3x^4+y^3+c*z^3+T(w) (c = 1,2,3,4,5,11), 3x^4+y^3+2z^3+2*T(w), 3x^4+y^3+2z^3+w^2, 3x^4+y^3+2z^3+w(3w-1)/2, 4x^4+y^3+c*z^3+T(w) (c = 2,3,4,6), 4x^4+y^3+2z^3+2*T(w), 5x^4+y^3+c*z^3+T(w) (c = 2,4), a*x^4+y^3+2z^3+T(w) (a = 6,20,28,40), 6x^4+y^3+2z^3+2*T(w), 6x^4+y^3+2z^3+w^2, a*x^4+y^3+3z^3+T(w) (a = 6,8,11), 8x^4+2y^3+4z^3+T(w), x^5+y^3+c*z^3+T(w) (c = 2,3,4), x^5+2y^3+c*z^3+T(w) (c = 3,6,8), 2x^5+y^3+4z^3+T(w), 3x^5+y^3+2z^3+T(w), 5x^5+y^3+c*z^3+T(w) (c = 2,4), x^6+y^3+3z^3+T(w), x^7+y^3+4z^3+T(w), x^4+2y^4+z^3+w^2, x^4+2y^4+2z^3+T(w), x^4+b*y^4+z^3+T(w) (b = 2,3,4), 2x^4+3y^4+z^3+T(w), a*x^5+y^4+z^3+T(w) (a = 1,2), x^5+2y^4+z^3+T(w).
The polynomials listed in the general conjecture should exhaust all those polynomials P(x,y,z,w) = a*x^i+b*y^j+c*z^k+w*(s*w+/-t)/2 with {P(x,y,z,w): x,y,z,w = 0,1,2,...} = {0,1,2,...}, where a,b,c,s > 0, 0 <= t <= s, s == t (mod 2), i >= j >= k >= 3, a <= b if i = j, and b <= c if j = k.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
Z.-W. Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127(2007), 103-113.
Z.-W. Sun, On universal sums of polygonal numbers, Sci. China Math. 58(2015), 1367-1396.
EXAMPLE
a(9) = 1 since 9 = 0^6 + 3*0^6 + 2^3 + 1*2/2.
a(24) = 1 since 24 = 1^6 + 3*0^6 + 2^3 + 5*6/2.
a(1501) = 1 since 1501 = 2^6 + 3*5^3 + 3^3 + 45*46/2.
a(1639) = 1 since 1639 = 0^6 + 3*6^3 + 1^3 + 44*45/2.
a(3013) = 1 since 3013 = 3^6 + 3*3^3 + 13^3 + 3*4/2.
MATHEMATICA
TQ[n_]:=TQ[n]=n>0&&IntegerQ[Sqrt[8n+1]]
Do[r=0; Do[If[TQ[n-x^6-3*y^3-z^3], r=r+1], {x, 0, n^(1/6)}, {y, 0, ((n-x^6)/3)^(1/3)}, {z, 1, (n-x^6-3y^3)^(1/3)}]; Print[n, " ", r]; Continue, {n, 0, 70}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 30 2016
STATUS
approved