login
A271026
Number of ordered ways to write n as x^7 + y^4 + z^3 + w*(3w+1)/2, where x, y, z are nonnegative integers, and w is an integer.
4
1, 4, 7, 7, 4, 2, 3, 4, 5, 6, 5, 3, 2, 4, 5, 4, 6, 7, 5, 3, 2, 3, 4, 6, 8, 5, 3, 5, 7, 8, 6, 5, 5, 3, 3, 5, 6, 4, 2, 4, 5, 4, 5, 7, 6, 3, 2, 1, 2, 4, 5, 5, 5, 5, 3, 2, 2, 3, 5, 6, 4, 1, 1, 2, 3, 6, 7, 6, 5, 4, 4, 5, 5, 3, 2, 2, 2, 3, 7, 9, 6
OFFSET
0,2
COMMENTS
Conjecture: (i) a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 47, 61, 62, 112, 175, 448, 573, 714, 1073, 1175, 1839, 2167, 8043, 13844.
(ii) Any natural number can be written as 3*x^6 + y^4 + z^3 + w*(3w+1)/2, where x, y, z are nonnegative integers and w is an integer.
(iii) For every a = 3, 4, 5, 9, 12, any natural number can be written as a*x^5 + y^4 + z^3 + w*(3w+1)/2, where x, y, z are nonnegative integers and w is an integer. Also, any natural number can be written as x^5 + 2*y^4 + 2*z^3 + w*(3w+1)/2 (or 3*x^5 + 2*y^4 + z^3 + w*(3w+1)/2), where x, y, z are nonnegative integers and w is an integer.
We have verified that a(n) > 0 for n up to 2*10^6.
See also A266968 for a related conjecture.
LINKS
Z.-W. Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127(2007), 103-113.
Z.-W. Sun, On universal sums of polygonal numbers, Sci. China Math. 58(2015), 1367-1396.
EXAMPLE
a(47) = 1 since 47 = 1^7 + 2^4 + 2^3 + (-4)*(3*(-4)+1)/2.
a(61) = 1 since 61 = 1^7 + 1^4 + 2^3 + (-6)*(3*(-6)+1)/2.
a(62) = 1 since 62 = 0^7 + 0^4 + 3^3 + (-5)*(3*(-5)+1)/2.
a(112) = 1 since 112 = 1^7 + 3^4 + 2^3 + (-4)*(3*(-4)+1)/2.
a(175) = 1 since 175 = 1^7 + 3^4 + 1^3 + (-8)*(3*(-8)+1)/2.
a(448) = 1 since 448 = 2^7 + 4^4 + 4^3 + 0*(3*0+1)/2.
a(573) = 1 since 573 = 1^7 + 4^4 + 6^3 + 8*(3*8+1)/2.
a(714) = 1 since 714 = 2^7 + 4^4 + 0^3 + (-15)*(3*(-15)+1)/2.
a(1073) = 1 since 1073 = 0^7 + 2^4 + 10^3 + 6*(3*6+1)/2.
a(1175) = 1 since 1175 = 0^7 + 5^4 + 5^3 + (-17)*(3*(-17)+1)/2.
a(1839) = 1 since 1839 = 1^7 + 4^4 + 5^3 + 31*(3*31+1)/2.
a(2167) = 1 since 2167 = 1^7 + 5^4 + 11^3 + (-12)*(3*(-12)+1)/2.
a(8043) = 1 since 8043 = 1^7 + 2^4 + 20^3 + 4*(3*4+1)/2.
a(13844) = 1 since 13844 = 3^7 + 2^4 + 21^3 + (-40)*(3*(-40)+1)/2.
MATHEMATICA
pQ[n_]:=pQ[n]=IntegerQ[Sqrt[24n+1]]
Do[r=0; Do[If[pQ[n-x^7-y^4-z^3], r=r+1], {x, 0, n^(1/7)}, {y, 0, (n-x^7)^(1/4)}, {z, 0, (n-x^7-y^4)^(1/3)}]; Print[n, " ", r]; Continue, {n, 0, 80}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 29 2016
STATUS
approved