OFFSET
0,2
COMMENTS
Conjecture: (i) a(n) > 0 for all n = 0,1,2,..., and the only values of n > 1428 with a(n) = 1 are 2205, 2259, 3556, 4107, 4337, 5387, 9331, 16561, 22237, 27569, 63947, 78610.
(ii) Any natural number can be written as x*(x^3+2) + y*(y+1)/2 + z*(3z+1), where x and y are nonnegative integers, and z is an integer.
(iii) Every n = 0,1,2,... can be written as x*(x^3+x^2+6) + y*(y+1)/2 + z*(3z+2) (or x*(x^3+x^2+4x+1) + y*(y+1)/2 + z*(3z+1)), where x and y are nonnegative integers, and z is an integer.
See also A270533 for a similar conjecture.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
Zhi-Wei Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127(2007), 103-113.
Zhi-Wei Sun, A result similar to Lagrange's theorem, J. Number Theory 162(2016), 190-211.
EXAMPLE
a(72) = 1 since 72 = 2^3*3 + 5*6/2 + 3*(3*3+2).
a(75) = 1 since 75 = 0^3*1 + 4*5/2 + (-5)*(3*(-5)+2).
a(5387) = 1 since 5387 = 7^3*8 + 2*3/2 + (-30)*(3*(-30)+2).
a(9331) = 1 since 9331 = 8^3*9 + 2*3/2 + (-40)*(3*(-40)+2).
a(16561) = 1 since 16561 = 1^3*2 + 101*102/2 + (-62)*(3*(-62)+2).
a(22237) = 1 since 22237 = 6^3*7 + 104*105/2 + 71*(3*71+2).
a(27569) = 1 since 27569 = 2^3*3 + 49*50/2 + (-94)*(3*(-94)+2).
a(63947) = 1 since 63947 = 0^3*1 + 173*174/2 + (-128)*(3*(-128)+2).
a(78610) = 1 since 78610 = 16^3*17 + 52*53/2 + 50*(3*50+2).
MATHEMATICA
OQ[x_]:=OQ[x]=IntegerQ[Sqrt[3x+1]]
Do[r=0; Do[If[OQ[n-y(y+1)/2-x^3*(x+1)], r=r+1], {y, 0, (Sqrt[8n+1]-1)/2}, {x, 0, (n-y(y+1)/2)^(1/4)}]; Print[n, " ", r]; Continue, {n, 0, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 18 2016
STATUS
approved