login
A266262
Decimal expansion of zeta'(-11) (the derivative of Riemann's zeta function at -11) (negated).
16
0, 1, 2, 7, 5, 2, 9, 8, 4, 4, 7, 9, 9, 6, 6, 6, 5, 6, 1, 1, 3, 5, 2, 2, 5, 2, 5, 4, 8, 8, 7, 2, 5, 7, 9, 8, 1, 5, 6, 2, 3, 8, 9, 3, 7, 0, 4, 9, 8, 7, 4, 2, 9, 2, 7, 9, 3, 2, 4, 6, 3, 6, 6, 6, 6, 1, 1, 4, 0, 7, 0, 2, 3, 2, 0, 6, 2, 1, 2, 4, 7, 4, 0, 9, 0, 4, 8, 1, 9, 3, 5, 4, 2
OFFSET
0,3
LINKS
FORMULA
zeta'(-n) = HarmonicNumber(n)*BernoulliB(n+1)/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant.
zeta'(-11) = - 57844301/908107200 - log(A(11)).
EXAMPLE
-0.012752984479966656113522525488725798156238937049874292793246366661...
MATHEMATICA
Join[{0}, RealDigits[Zeta'[-11], 10, 100] // First]
CROSSREFS
Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)).
Sequence in context: A178422 A372773 A296564 * A105387 A011232 A272699
KEYWORD
nonn,cons
AUTHOR
G. C. Greubel, Dec 25 2015
EXTENSIONS
Keyword cons added by Rick L. Shepherd, May 29 2016
STATUS
approved