login
A266263
Decimal expansion of zeta'(-12) (the derivative of Riemann's zeta function at -12).
14
0, 6, 3, 2, 7, 0, 5, 8, 3, 3, 4, 1, 4, 6, 3, 0, 0, 0, 5, 9, 5, 1, 8, 2, 3, 0, 1, 2, 3, 4, 3, 0, 7, 7, 6, 7, 5, 1, 1, 4, 1, 8, 1, 8, 4, 7, 5, 3, 2, 3, 6, 3, 7, 6, 6, 7, 9, 5, 6, 5, 9, 4, 5, 6, 7, 0, 6, 2, 1, 5, 2, 5, 4, 6, 0, 6, 7, 4, 9, 7, 6, 7, 3, 7, 4, 7, 1, 0, 3, 4, 3, 7, 1
OFFSET
0,2
LINKS
FORMULA
zeta'(-12) = (-467775*Zeta(13))/(8*Pi^12) = - log(A(12)).
Equals (691/10920)*(zeta(13)/zeta(12)).
EXAMPLE
0.06327058334146300059518230123430776751141818475323637667956594567...
MATHEMATICA
Join[{0}, RealDigits[(691/10920)*(Zeta[13]/Zeta[12]), 10, 100] // First]
CROSSREFS
Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)).
Sequence in context: A088395 A272082 A283443 * A177707 A076214 A011488
KEYWORD
nonn,cons
AUTHOR
G. C. Greubel, Dec 25 2015
STATUS
approved