login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259073 Decimal expansion of zeta'(-8) (the derivative of Riemann's zeta function at -8). 21
0, 0, 8, 3, 1, 6, 1, 6, 1, 9, 8, 5, 6, 0, 2, 2, 4, 7, 3, 5, 9, 5, 2, 4, 4, 2, 6, 5, 1, 0, 5, 3, 4, 2, 1, 4, 2, 2, 5, 6, 7, 4, 1, 2, 2, 9, 1, 8, 8, 2, 9, 9, 9, 9, 0, 4, 0, 2, 1, 0, 5, 3, 2, 7, 5, 3, 0, 5, 6, 9, 1, 7, 4, 0, 7, 8, 8, 1, 2, 3, 5, 3, 8, 3, 4, 8, 3, 4, 5, 2, 5, 1, 4, 5, 2, 4, 4, 0, 3, 5, 1, 7, 4, 1, 2, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15.1 Generalized Glaisher constants, p. 136-137.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..2000

Eric Weisstein's MathWorld, Riemann Zeta Function.

Wikipedia, Riemann Zeta Function

FORMULA

zeta'(-n) = (BernoulliB(n+1)*HarmonicNumber(n))/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant, that is the n-th generalized Glaisher constant.

zeta'(-8) = 315*zeta(9)/(4*Pi^8) = -log(A(8)).

EXAMPLE

0.0083161619856022473595244265105342142256741229188299990402105327530569174...

MATHEMATICA

Join[{0, 0}, RealDigits[Zeta'[-8], 10, 104] // First]

PROG

(PARI) zeta'(-8) \\ Altug Alkan, Dec 08 2015

CROSSREFS

Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)).

Sequence in context: A021550 A092555 A001061 * A075525 A242048 A097890

Adjacent sequences:  A259070 A259071 A259072 * A259074 A259075 A259076

KEYWORD

nonn,cons

AUTHOR

Jean-Fran├žois Alcover, Jun 18 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 14:50 EST 2019. Contains 329979 sequences. (Running on oeis4.)