OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1500
FORMULA
zeta'(-n) = (BernoulliB(n+1)*HarmonicNumber(n))/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant, that is the n-th generalized Glaisher constant.
zeta'(-13) = (1145993/4324320) - log(A(13)).
zeta'(-13) = 1145993/4324320 - gamma/12 - log(2*Pi)/12 + 6081075*Zeta'(14) / (8*Pi^14), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Dec 05 2015
EXAMPLE
0.06374987374457688028603868147333505564882735...
MATHEMATICA
N[Zeta'[-13]]
Join[{0}, RealDigits[Zeta'[-13], 10, 1500] // First]
PROG
(PARI) zeta'(-13) \\ Altug Alkan, Nov 13 2015
CROSSREFS
Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)).
KEYWORD
nonn,cons
AUTHOR
G. C. Greubel, Nov 13 2015
STATUS
approved