login
A266273
Decimal expansion of zeta'(-18) (the derivative of Riemann's zeta function at -18) (negated).
14
1, 3, 7, 4, 2, 7, 6, 8, 2, 5, 0, 2, 1, 4, 0, 5, 4, 4, 3, 5, 2, 2, 0, 5, 6, 4, 1, 9, 0, 5, 1, 8, 5, 5, 1, 0, 7, 3, 0, 9, 5, 3, 7, 2, 1, 5, 7, 7, 0, 4, 9, 8, 5, 6, 0, 4, 7, 4, 5, 6, 5, 1, 5, 3, 4, 8, 8, 8, 9, 4, 6, 3, 3, 7, 8, 8, 5, 8, 5, 3, 8, 8, 2, 3, 4, 0, 6, 0, 9, 9, 0, 0, 3, 2, 3
OFFSET
2,2
LINKS
FORMULA
zeta'(-18) = -(97692469875*zeta(19))/(8*Pi^18) = - log(A(18)).
Equals -(43867/3192)*(zeta(19)/zeta(18)).
EXAMPLE
-13.74276825021405443522056419051855107309537215770498560....
MATHEMATICA
RealDigits[N[Zeta'[-18], 100]]
CROSSREFS
Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266274 (zeta'(-19)), A266275 (zeta'(-20)).
Sequence in context: A344427 A163335 A367264 * A341605 A256676 A349010
KEYWORD
nonn,cons
AUTHOR
G. C. Greubel, Dec 25 2015
EXTENSIONS
Offset corrected by Rick L. Shepherd, May 30 2016
STATUS
approved